已知数列为等差数列,其公差d不为0,和的等差中项为11,且,令,数列的前n项和为.(1)求及;(2)是否存在正整数m,n(1<m<n),使得成等比数列?若存在,求出所有的m,n的值;若不存在,请说明理由.
(本小题满分13分) 一个袋中装有个形状大小完全相同的小球,球的编号分别为. (Ⅰ)若从袋中每次随机抽取1个球,有放回的抽取2次,求取出的两个球编号之和为6的概率; (Ⅱ)若从袋中每次随机抽取个球,有放回的抽取3次,求恰有次抽到号球的概率; (Ⅲ)若一次从袋中随机抽取个球,记球的最大编号为,求随机变量的分布列.
(本小题满分13分) 如图,在三棱柱中,侧面,均为正方形,∠,点是棱的中点. (Ⅰ)求证:⊥平面; (Ⅱ)求证:平面; (Ⅲ)求二面角的余弦值.
(本小题满分13分) 已知函数. (Ⅰ)若点在角的终边上,求的值; (Ⅱ)若,求的值域.
(本小题满分14分) 等比数列的前项和,且 (1)求数列的通项公式 (2)求数列的前项的和.
(本小题满分12分) 已知函数和,若对任意的,恒有 (1)证明:且 (2)证明:当时,