有两枚大小相同、质地均匀的正四面体玩具,每个玩具的各个面上分别写着数字1,2,3,5. 同时投掷这两枚玩具一次,记为两个朝下的面上的数字之和.(Ⅰ)求事件“不大于6”的概率;(Ⅱ)“为奇数”的概率和“为偶数”的概率是不是相等?证明你的结论.
如图,过抛物线的对称轴上任一点作直线与抛物线交于两点,点是点关于原点的对称点.(1) 设点分有向线段所成的比为,证明:; (2) 设直线的方程是,过两点的圆与抛物线在点处有共同的切线,求圆的方程.
已知三角形ABC的三个顶点均在椭圆上,且点A是椭圆短轴的一个端点(点A在y轴正半轴上).(1)若三角形ABC的重心是椭圆的右焦点,试求直线BC的方程;若角A为,AD垂直BC于D,试求点D的轨迹方程.
如图,椭圆的中心在原点,长轴AA1在x轴上.以A、A1为焦点的双曲线交椭圆于C、D、D1、C1四点,且|CD|=|AA1|.椭圆的一条弦AC交双曲线于E,设,当时,求双曲线的离心率e的取值范围.
设,为直角坐标平面内x轴.y轴正方向上的单位向量,若,且(Ⅰ)求动点M(x,y)的轨迹C的方程;(Ⅱ)设曲线C上两点A.B,满足(1)直线AB过点(0,3),(2)若,则OAPB为矩形,试求AB方程.
在直角坐标平面中,的两个顶点的坐标分别为,,平面内两点同时满足下列条件:①;②;③∥(1)求的顶点的轨迹方程;(2)过点的直线与(1)中轨迹交于两点,求的取值范围