已知在四棱锥P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分别是线段AB、BC的中点. (1)证明:PF⊥FD; (2)判断并说明PA上是否存在点G,使得EG∥平面PFD; (3)若PB与平面ABCD所成的角为45°,求二面角A-PD-F的余弦值.
(本小题满分14分)已知二阶矩阵,若矩阵属于特征值的一个特征向量,属于特征值3的一个特征向量. (Ⅰ)求实数的值; (Ⅱ)若向量,计算的值.
(本小题满分14分)已知函数(为自然对数的底数),曲线在处的切线与直线互相垂直. (Ⅰ)求实数的值; (Ⅱ)若对任意, 恒成立,求实数的取值范围; (Ⅲ)设,.问:是否存在正常数,对任意给定的正整数,都有成立?若存在,求的最小值;若不存在,请说明理由.
(本小题满分13分)如图,已知椭圆的离心率为,其左、右顶点分别为.一条不经过原点的直线与该椭圆相交于、两点. (Ⅰ)求椭圆的方程; (Ⅱ)若,直线与的斜率分别为.试问:是否存在实数,使得?若存在,求的值;若不存在,请说明理由.
(本小题满分13分)如图,已知是圆的两条互相垂直的直径,直角梯形所在平面与圆所在平面互相垂直,其中,,,,点为线段中点. (Ⅰ)求证:直线平面; (Ⅱ)若点在线段上,且点在平面上的射影为线段的中点,请求出线段的长.
(本小题满分13分)某运动队拟在2015年3月份安排5次体能测试,规定:依次测试,只需有一次测试合格就不必参加后续的测试.已知运动员小刘5次测试每次合格的概率依次构成一个公差为的等差数列,他第一次测试合格的概率不超过,且他直到第二次测试才合格的概率为. (Ⅰ)求小刘第一次参加测试就合格的概率; (Ⅱ)在小刘参加第一、第二次测试均不合格的前提下,记小刘参加后续测试的次数为,求随机变量的分布列和数学期望.