在平面直角坐标系xoy中,以点P为圆心的圆与圆x2+y2-2y=0外切且与x轴相切(两切点不重合).(1)求动点P的轨迹方程;(2)若直线mx一y+2m+5=0(m∈R)与点P的轨迹交于A、B两点,问:当m变化时,以线段AB为直径的圆是否会经过定点?若会,求出此定点;若不会,说明理由.
(本小题满分13分) 已知椭圆的离心率,且短半轴为其左右焦点,是椭圆上动点. (Ⅰ)求椭圆方程; (Ⅱ)当时,求面积; (Ⅲ)求取值范围.
(本小题满分13分). (Ⅰ)求的单调区间; (Ⅱ)若的图像不存在与平行或重合的切线,求实数的取值范围.
(本小题满分13分) 某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答下列问题: (Ⅰ)求全班人数及分数在之间的频数; (Ⅱ)不看茎叶图中的具体分数,仅根据频率分布直方图估计该班的平均分数; (Ⅲ)若要从分数在之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在之间的概率.
(本小题满分12分) 如图,四棱锥中,底面是菱形,,侧面底面,分别为中点. (Ⅰ)求证:∥平面; (Ⅱ)求证:平面平面.
(本小题满分12分)设. (Ⅰ)求最大值及相应值; (Ⅱ)锐角中,满足.求取值范围.