已知椭圆C的两个焦点是)和,并且经过点,抛物线的顶点E在坐标原点,焦点恰好是椭圆C的右顶点F.(1)求椭圆C和抛物线E的标准方程;(2)过点F作两条斜率都存在且互相垂直的直线l1、l2,l1交抛物线E于点A、B,l2交抛物线E于点G、H,求的最小值.
如图,在四面体中,,,点,分别是,的中点. (1)EF∥平面ACD; (2)求证:平面⊥平面; (3)若平面⊥平面,且,求三棱锥的体积.
已知圆及直线. 当直线被圆截得的弦长为时, 求(1)的值;(2)求过点并与圆相切的切线方程.
已知直线经过点,求分别满足下列条件的直线方程: (1)倾斜角的正弦为; (2)与两坐标轴的正半轴围成的三角形面积为4.
设函数的定义域为,并且满足,且,当时, (1).求的值; (2).判断函数的奇偶性; (3).如果,求的取值范围.
设定义在上的奇函数 (1).求值; (2).若在上单调递增,且,求实数的取值范围.