(本小题满分8分) 如图,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了,冰淇淋会从杯子溢出吗?请用你的计算数据说明理由.
_
.设函数f(x)=,其中向量="(2cosx,1)," =(cosx,sin2x), x∈R.(1) 求f(x)的最小正周期;并求的值域和单调区间;(2)在△ABC中,a、b、c分别是角A、B、C的对边,f(A)=2,a=,b+c=3(b>c),求b、c的长.
已知数列满足,(1)若,求;(2)是否存在,使当时,恒为常数.若存在求,否则说明理由;
已知函数(1)求函数的单调递增区间;(2)记函数的图象为曲线C.设点A(x1,y1),B(x2,y2)是曲线C上的不同两点.如果在曲线C上存在点M(x0,y0),使得:①;②曲线C在点M处的切线平行于直线AB,则称函数F(x)存在“中值相依切线”,试问:函数f(x)是否存在“中值相依切线”,请说明理由.
已知⊙O:,为抛物线的焦点,为⊙O外一点,由作⊙O的切线与圆相切于点,且(1)求点P的轨迹C的方程(2)设A为抛物线准线上任意一点,由A向曲线C作两条切线AB、AC,其中B、C为切点.求证:直线BC必过定点
已知所在的平面互相垂直,且AB=BC=BD,,求:⑴.直线AD与平面BCD所成角的大小;⑵.直线AD与直线BC所成角的大小;⑶.二面角A-BD-C的余弦值.