已知三条直线 ,直线和直线,且与的距离是(1)求的值(2)能否找到一点,使得点同时满足下面三个条件,①是第一象限的点;②到的距离是到距离的,③点到的距离与到的距离之比是,若能,求点的坐标,若不能,说明理由。
设函数,其中向量,,,。 (1)求函数的最大值和最小正周期; (2)将函数的图像按向量平移,使平移后得到的图像关于坐标原点成中心对称,求长度最小的。
已知f(A,B)=sin22A+cos22B-sin2A-cos2B+2. (1)设△ABC的三内角为A、B、C,求f(A,B)取得最小值时,C的值; (2)当A+B=且A、B∈R时,y=f(A,B)的图象按向量p平移后得到函数y=2cos2A的图象,求满足上述条件的一个向量p.
抛物线的焦点坐标是?
设函数,其中向量,,. (1)若,且,求x的值; (2)若函数的图像按向量平移后得到函数的图像,求实数的值。
已知曲线x2+2y2+4x+4y+4=0按向量a=(2,1)平移后得到曲线C. (1)求曲线C的方程; (2)过点D(0,2)的直线与曲线C相交于不同的两点M、N,且M在D、N之间,设,求实数λ的取值范围.