设函数.
(1)求的最小正周期和值域;
(2)在锐角△中,角的对边分别为,若且,,求和.
在平面直角坐标系中,已知点在圆内,动直线过点且交圆于两点,若△ABC的面积的最大值为,则实数的取值范围为 .
已知、为椭圆的左、右焦点,且点在椭圆上.
(1)求椭圆的方程;
(2)过的直线交椭圆于两点,则的内切圆的面积是否存在最大值,若存在其最大值及此时的直线方程;若不存在,请说明理由.
函数是上的增函数且,其中是锐角,并且使得函数在上单调递减,则的取值范围是( )
A. | B. | C. | D. |
选修4—4:坐标系与参数方程
在直角坐标系中,圆的参数方程为参数).以为极点,轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求圆的极坐标方程;
(Ⅱ)直线的极坐标方程是,射线与圆的交点为,与直
线的交点为,求线段的长.
已知椭圆:的离心率为,直线:与以原点为圆心、以椭圆的短半轴长为半径的圆相切.
(1)求椭圆的方程;
(2)过的直线交椭圆于两点,则的内切圆的面积是否存在最大值,若存在其最大值及此时的直线方程;若不存在,请说明理由.
如图所示,在四棱锥中,底面四边形是菱形,,是边长为2的等边三角形,,.
(1)求证:底面;
(2)求直线与平面所成角的大小;
(3)在线段上是否存在一点,使得∥平面?如果存在,求的值,如果不存在,请说明理由.
在中,分别是内角的对边,且,且.
(1)求角的大小;
(2)若边上高为1,求面积的最小值.
抛物线的焦点为,点为该抛物线上的动点,又已知点,则的取值范围是( )
A. | B. | C. | D. |
已知是正数, ,,.
(1)若成等差数列,比较与的大小;
(2)若,则三个数中,哪个数最大,请说明理由;
(3)若,,(),且,,的整数部分分别是求所有的值.