高中数学

已知甲船正在大海上航行,当它位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救,甲船立即以10海里/小时的速度匀速前往救援,同时把消息告知在甲船的南偏西,相距10海里C处的乙船,乙船当即决定匀速前往救援,并且与甲船同时到达。(供参考使用:).
(1)试问乙船航行速度的大小;
(2)试问乙船航行的方向(试用方位角表示,如北偏东…度).

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知数列是等差数列,且.
(1)求数列的通项公式;
(2)令,求数列的前项和.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

对于数列,把作为新数列的第一项,把)作为新数列的第项,数列称为数列的一个生成数列.例如,数列的一个生成数列是.已知数列为数列的生成数列,为数列的前项和.
(1)写出的所有可能值;
(2)若生成数列满足的通项公式为,求.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

给定椭圆,称圆心在原点,半径为的圆是椭圆的“准圆”.若椭圆的一个焦点为,其短轴上的一个端点到的距离为.

(1)求椭圆的方程和其“准圆”方程;
(2)点是椭圆的“准圆”上的动点,过点作椭圆的切线交“准圆”于点.
(ⅰ)当点为“准圆”与轴正半轴的交点时,求直线的方程并证明
(ⅱ)求证:线段的长为定值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(1)若处取得极值,求实数的值;
(2)求函数的单调区间;
(3)若上没有零点,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

给定椭圆,称圆心在原点,半径为的圆是椭圆的“准圆”.若椭圆的一个焦点为,其短轴上的一个端点到的距离为.

(1)求椭圆的方程和其“准圆”方程;
(2)点是椭圆的“准圆”上的动点,过点作椭圆的切线交“准圆”于点.
(ⅰ)当点为“准圆”与轴正半轴的交点时,求直线的方程,
并证明
(ⅱ)求证:线段的长为定值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数.
(1)若,求函数的单调区间;
(2)若函数在区间上是减函数,求实数的取值范围;
(3)过坐标原点作曲线的切线,证明:切点的横坐标为.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

若存在实常数,使得函数对其定义域上的任意实数分别满足:,则称直线的“隔离直线”.已知函数和函数,那么函数和函数的隔离直线方程为_________.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在数列中,且对任意的成等比数列,其公比为
(1)若
(2)若对任意的成等差数列,其公差为
①求证:成等差数列,并指出其公差;
②若,试求数列的前项和

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知抛物线
(1)若圆心在抛物线上的动圆,大小随位置而变化,但总是与直线相切,求所有的圆都经过的定点坐标;
(2)抛物线的焦点为,若过点的直线与抛物线相交于两点,若,求直线的斜率;
(3)若过点且相互垂直的两条直线,抛物线与交于点交于点
证明:无论如何取直线,都有为一常数.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知为正实数,
(1)当的三边长,且所对的角分别为.若,且.求的长;
(2)若.试证明长为的线段能构成三角形,而且边的对角为

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

对于函数,若在定义域存在实数,满足,则称为“局部奇函数”.
(1)已知二次函数,试判断是否为“局部奇函数”?并说明理由;
(2)设是定义在上的“局部奇函数”,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设倒圆锥形容器的轴截面为一个等边三角形,在此容器内注入水,并浸入半径为的一个实心球,使球与水面恰好相切,试求取出球后水面高为多少?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

对于函数,若在定义域存在实数,满足,则称为“局部奇函数”.
(1)已知二次函数,试判断是否为“局部奇函数”?并说明理由;
(2)设是定义在上的“局部奇函数”,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,设是一个高为的四棱锥,底面是边长为的正方形,顶点在底面上的射影是正方形的中心.是棱的中点.试求直线与平面所成角的大小.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学试题