北京市石景山区高三一模文科数学试卷
在等比数列中,,则数列的通项公式_____________,设,则数列的前项和_____________.
来源:2014届北京市石景山区高三一模文科数学试卷
一艘轮船在匀速行驶过程中每小时的燃料费与它速度的平方成正比,除燃料费外其它费用为每小时元. 当速度为海里/小时时,每小时的燃料费是元. 若匀速行驶海里,当这艘轮船的速度为___________海里/小时时,费用总和最小.
来源:2014届北京市石景山区高三一模文科数学试卷
若存在实常数和,使得函数和对其定义域上的任意实数分别满足:和,则称直线为和的“隔离直线”.已知函数和函数,那么函数和函数的隔离直线方程为_________.
来源:2014届北京市石景山区高三一模文科数学试卷
某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如下图.
(1)求分数在的频率及全班人数;
(2)求分数在之间的频数,并计算频率分布直方图中间矩形的高;
(3)若要从分数在之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在之间的概率.
来源:2014届北京市石景山区高三一模文科数学试卷
如图,已知四棱锥,,,
平面,∥,为的中点.
(1)求证:∥平面;
(2)求证:平面平面;
(3)求四棱锥的体积.
来源:2014届北京市石景山区高三一模文科数学试卷
已知函数.
(1)若在处取得极值,求实数的值;
(2)求函数的单调区间;
(3)若在上没有零点,求实数的取值范围.
来源:2014届北京市石景山区高三一模文科数学试卷
给定椭圆:,称圆心在原点,半径为的圆是椭圆的“准圆”.若椭圆的一个焦点为,其短轴上的一个端点到的距离为.
(1)求椭圆的方程和其“准圆”方程;
(2)点是椭圆的“准圆”上的动点,过点作椭圆的切线交“准圆”于点.
(ⅰ)当点为“准圆”与轴正半轴的交点时,求直线的方程并证明;
(ⅱ)求证:线段的长为定值.
来源:2014届北京市石景山区高三一模文科数学试卷