选修4-5:不等式选讲已知,.(1)求的最小值;(2)证明:.
已知是定义在上的不恒为零的函数,且对任意的都满足:,若,(),求证:.
设是上的偶函数,求的值.
设对有意义,,且成立的充要条件是.(1)求与的值;(2)当时,求的取值范围.
设函数是二次函数,已知,且有两个相等实根.问是否存在一个常数,使得直线将函数的图象与坐标轴所围成的图形分成面积相等的两部分,若不存在,请说明理由;若存在,则求出此常数.
极限表示为定积分.