如图,在四棱锥P-ABCD中,ABCD为平行四边形,平面PAB,,.M为PB的中点.
(1)求证:PD//平面AMC;
(2)求锐二面角B-AC-M的余弦值.
在数列中,.从数列中选出项并按原顺序组成的新数列记为,并称为数列的项子列.例如数列、、、为的一个项子列.
(1)试写出数列的一个项子列,并使其为等比数列;
(2)如果为数列的一个项子列,且为等差数列,证明:的公差满足;
(3)如果为数列的一个项子列,且为等比数列,证明:.
如图,在四棱锥中,底面是矩形,,,,是棱的中点.
(1)求证:平面;
(2)求证:平面;
(3)在棱上是否存在一点,使得平面平面?若存在,求出的值;若不存在,说明理由.
已知椭圆,直线与相交于、两点,与轴、轴分别相交于、两点,为坐标原点.
(1)若直线的方程为,求外接圆的方程;
(2)判断是否存在直线,使得、是线段的两个三等分点,若存在,求出直线的方程;若不存在,说明理由.
已知函数,其中.
(1)当时,求函数的图象在点处的切线方程;
(2)如果对于任意、,且,都有,求的取值范围.
如下图,在四棱柱中,底面和侧面都
是矩形,是的中点,,.
(1)求证:
(2)求证:平面;
(3)若平面与平面所成的锐二面角的大小为,求线段的长度.
在某批次的某种灯泡中,随机地抽取个样品,并对其寿命进行追踪调查,将结果列成频率分布表如下.根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于天的灯泡是优等品,寿命小于天的灯泡是次品,其余的灯泡是正品.
寿命(天) |
频数 |
频率 |
合计 |
(1)根据频率分布表中的数据,写出、的值;
(2)某人从灯泡样品中随机地购买了个,如果这个灯泡的等级情况恰好与按三个等级分层抽样所得的结果相同,求的最小值;
(3)某人从这个批次的灯泡中随机地购买了个进行使用,若以上述频率作为概率,用表示此人所购买的灯泡中次品的个数,求的分布列和数学期望.
在平面直角坐标系中,对于任意相邻三点都不共线的有序整点列(整点即横纵坐标都是整数的点):与:,其中,若同时满足:①两点列的起点和终点分别相同;②线段,其中,则称与互为正交点列.
(1)试判断:与:是否互为正交点列,并说明理由;
(2)求证::不存在正交点列;
(3)是否存在无正交点列的有序整数点列?并证明你的结论.
已知是椭圆上两点,点的坐标为.
(1)当关于点对称时,求证:;
(2)当直线经过点时,求证:不可能为等边三角形.
在平面直角坐标系中,对于任意相邻三点都不共线的有序整点列(整点即横纵坐标都是整数的点):与:,其中,若同时满足:①两点列的起点和终点分别相同;②线段,其中,则称与互为正交点列.
(1)求:的正交点列;
(2)判断:是否存在正交点列?并说明理由;
(3)N,是否都存在无正交点列的有序整点列?并证明你的结论.
已知曲线.
(1)若曲线C在点处的切线为,求实数和的值;
(2)对任意实数,曲线总在直线:的上方,求实数的取值范围.
如图1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D为AC中点,于,延长AE交BC于F,将ABD沿BD折起,使平面ABD平面BCD,如图2所示.
(1)求证:AE⊥平面BCD;
(2)求二面角A–DC–B的余弦值.
(3)在线段上是否存在点使得平面?若存在,请指明点的位置;若不存在,请说明理由.