高中数学

已知表示两条不同直线,表示平面,下列说法正确的是( )

A.若,则
B.若,则
C.若,则
D.若,则
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,正四棱柱ABCD—A1B1C1D1中,AA1=2AB=4,点E在C1C上,且C1E=3EC.

(1)证明A1C⊥平面BED;
(2)求二面角A1-DE-B的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,PA=2,BC=CD=2,∠ACB=∠ACD=

(1)求证:BD⊥平面PAC;
(2)若侧棱PC上的点F满足PF=7FC,求三棱锥P﹣BDF的体积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

是空间中的一个平面,是三条不同的直线,则下列命题中正确的是(  )

A.若
B.若
C.若,则
D.若
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四棱锥中,平面,且,点上.

(1)求证:
(2)若二面角的大小为,求与平面所成角的正弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在长方体中,,点是线段中点.

(1)求证:
(2)求点到平面的距离.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

三棱柱中,侧棱底面,底面三角形是正三角形,中点,则下列叙述正确的是(  )

A.是异面直线
B.平面
C.
D.平面
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,中,的中点,.将沿折起,使点与图中点重合.

(1)求证:平面
(2)当三棱锥的体积取最大时,求二面角的余弦值;
(3)在(2)条件下,试问在线段上是否存在一点,使与平面所成角的正弦值为?证明你的结论.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

是两条不同的直线,是三个不同的平面,有以下四个命题:
  ②   ③   ④
其中正确的命题是( )

A.①④ B.②③ C.①③ D.②④
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

表示不同的直线,表示不同的平面,给出下列四个命题:
①若,且,则
②若,且,则
③若,则
④若,则
其中正确命题的个数是(     ) 

A.1 B.2 C.3 D.4
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在如图所示的几何体中, △ABC为正三角形,AE和CD都垂直于平面ABC,且AE=AB=2,CD=1,F为BE的中点.

(Ⅰ)求证:平面DBE⊥平面ABE;
(Ⅱ)求直线BD和平面ACDE所成角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)
如图,已知正三棱柱各棱长都是4,的中点,动点在侧棱上,且不与点重合.
(Ⅰ)当时,求证:
(Ⅱ)设二面角的大小为,求的最小值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

直三棱柱中,分别是 的中点,为棱上的点.

(1)证明:
(2)是否存在一点,使得平面与平面所成锐二面角的余弦值为
若存在,说明点的位置,若不存在,说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知是两条不同的直线,为三个不同的平面,则下列命题中错误的是(   )

A.若
B.若,则
C.若
D.若,则
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知四棱锥的底面为菱形,

(1)求证:
(2)求二面角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学空间向量的应用试题