如图,正四棱柱ABCD—A1B1C1D1中,AA1=2AB=4,点E在C1C上,且C1E=3EC.
(1)证明A1C⊥平面BED;
(2)求二面角A1-DE-B的余弦值.
如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,PA=2,BC=CD=2,∠ACB=∠ACD=.
(1)求证:BD⊥平面PAC;
(2)若侧棱PC上的点F满足PF=7FC,求三棱锥P﹣BDF的体积.
如图,中,是的中点,,.将沿折起,使点与图中点重合.
(1)求证:平面;
(2)当三棱锥的体积取最大时,求二面角的余弦值;
(3)在(2)条件下,试问在线段上是否存在一点,使与平面所成角的正弦值为?证明你的结论.
设是两条不同的直线,是三个不同的平面,有以下四个命题:
① ② ③ ④
其中正确的命题是( )
A.①④ | B.②③ | C.①③ | D.②④ |
设表示不同的直线,表示不同的平面,给出下列四个命题:
①若,且,则;
②若,且,则;
③若,,,则;
④若,,且,则.
其中正确命题的个数是( )
A.1 | B.2 | C.3 | D.4 |
在如图所示的几何体中, △ABC为正三角形,AE和CD都垂直于平面ABC,且AE=AB=2,CD=1,F为BE的中点.
(Ⅰ)求证:平面DBE⊥平面ABE;
(Ⅱ)求直线BD和平面ACDE所成角的余弦值.
(本小题满分12分)
如图,已知正三棱柱各棱长都是4,是的中点,动点在侧棱上,且不与点重合.
(Ⅰ)当时,求证:;
(Ⅱ)设二面角的大小为,求的最小值.
直三棱柱中,,分别是 的中点,,为棱上的点.
(1)证明:;
(2)是否存在一点,使得平面与平面所成锐二面角的余弦值为?
若存在,说明点的位置,若不存在,说明理由.