初中数学

如图所示,⊙O的内接△ABC中,∠BAC=45°,∠ABC=15°,AD∥OC并交BC的延长线于D点,OC交AB于E点.

(1)求∠D的度数;    
(2)求证:AC2=AD·CE.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A、与大圆相交于点B.小圆的切线AC与大圆相交于点D,且CO平分∠ACB.

(1)试判断BC所在直线与小圆的位置关系,并说明理由;
(2)试判断线段AC、AD、BC之间的数量关系,并说明理由;
(3)若,求大圆与小圆围成的圆环的面积.(结果保留π)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A.与大圆相交于点B.小圆的切线AC与大圆相交于点D,且CO平分∠ACB.

(1)试判断BC所在直线与小圆的位置关系,并说明理由;
(2)试判断线段AC,AD,BC之间的数量关系,并说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,△ABC中,以AB为直径的⊙O交AC于点D,∠DBC=∠BAC.

(1)求证:BC是⊙O的切线.
(2)若⊙O的半径为2,∠BAC=30°,求图中阴影部分的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在Rt△ABC中,∠ACB=90°,AC=6,D为BC边上一点,CD=3,过A,C,D三点的⊙O与斜边AB交于点E,连结DE.

(1)求证:△BDE ∽△BAC;
(2)求△ACD外接圆的直径的长;
(3)若AD平分∠CAB,求出BD的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,点A,B,C,D在⊙O上,且AB=CD,求证:CE=BE.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,⊙P与扇形OAB的半径OA、OB分别相切于点C、D,与弧AB相切于点E,已知OA=15cm,∠AOB=60°,求图中阴影部分的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知:如图,以的边为直径的交边于点,且过 点的切线平分边

(1)求证:的切线;
(2)当满足什么条件时,以点 为顶点的四边形是平行四边形?请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,⊙A与x轴相交于C(﹣2,0),D(﹣8,0)两点,与y轴相切于点B(0,4).

(1)求经过B,C,D三点的抛物线的函数表达式;
(2)设抛物线的顶点为E,证明:直线CE与⊙A相切;
(3)在x轴下方的抛物线上,是否存在一点F,使△BDF面积最大,最大值是多少?并求出点F的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点P,PD⊥AC于点D.

(1)求证:PD是⊙O的切线;
(2)若∠CAB=120°,AB=2,求BC的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,一条公路的转弯处是一段圆弧AB.

(1)用直尺和圆规作出弧AB所在圆的圆心O;(要求保留作图痕迹,不写作法)
(2)若弧AB的中点C到弦AB的距离为m,AB=80m,求弧AB所在圆的半径.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知C是弧AB的中点,OC交弦AB于点D.∠AOB=120°,AB=
求OA的长。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知⊙O的直径AB=12cm,AC是⊙O的弦,过点C作⊙O的切线交BA的延长线于点P,连接BC.

(1)求证:∠PCA=∠B;
(2)已知∠P=40°,点Q在优弧ABC上,从点A开始逆时针运动到点C停止(点Q与点C不重合),当△ABQ与△ABC的面积相等时,求动点Q所经过的弧长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,∠M=∠D.

(1)判断BC、MD的位置关系,并说明理由;
(2)若AE=16,BE=4,求线段CD的长;
(3)若MD恰好经过圆心O,求∠D的度数.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

等腰直角△ABC和⊙O如图放置,已知AB=BC=1,∠ABC=90°,⊙O的半径为1,圆心O与直线AB的距离为5.现△ABC以每秒2个单位的速度向右移动,同时△ABC的边长AB、BC又以每秒0.5个单位沿BA、BC方向增大.

(1)当△ABC的边(BC边除外)与圆第一次相切时,点B移动了多少距离?
(2)若在△ABC移动的同时,⊙O也以每秒1个单位的速度向右移动,则△ABC从开始移动,到它的边与圆最后一次相切,一共经过了多少时间?
(3)在(2)的条件下,是否存在某一时刻,△ABC与⊙O的公共部分等于⊙O的面积?若存在,求出恰好符合条件时两个图形移动了多少时间?若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学圆幂定理解答题