初中数学

如图,PB为⊙O的切线,B为切点,直线PO交⊙O于点E,F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.

(1)求证:直线PA为⊙O的切线;
(2)求证:EF2=4OD•OP;
(3)若BC=6,tan∠F=,求AC的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

实践操作
如图,△ABC是直角三角形,∠ACB=90°,利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)
(1)作∠BAC的平分线,交BC于点O;
(2)以O为圆心,OC为半径作圆.
综合运用在你所作的图中,

(1)AB与⊙O的位置关系是       ;(直接写出答案)
(2)若AC=5,BC=12,求⊙O的半径.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在菱形ABCD中,∠A=60°,以点D为圆心的⊙D与边AB相切于点E.

(1)求证:⊙D与边BC也相切;
(2)设⊙D与BD相交于点H,与边CD相交于点F,连接HF.若AB=,求图中阴影部分的面积(结果保留π);
(3)假设⊙D的半径为r,⊙D上一动点M从点F出发,按逆时针方向运动一周,当△MDF与△ABD的面积之比为时,求动点M经过的弧长(结果用含r 的式子表示,保留π).

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在半径为5的扇形中,=90°,点是弧上的一个动点(不与点重合),垂足分别为

(1)当BC=6时,求线段的长;
(2)在中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

阅读下列材料,然后解答问题.
经过正四边形(即正方形)各顶点的圆叫做这个正四边形的外接圆,圆心是正四边形的对称中心,这个正四边形叫做这个圆的内接正四边形.
如图,正方形ABCD内接于⊙O,⊙O的面积为S1,正方形ABCD的面积为S2.以圆心O为顶点作∠MON,使∠MON=90°.将∠MON绕点O旋转,OM、ON分别与⊙O交于点E、F,分别与正方形ABCD的边交于点G、H.设由OE、OF、及正方形ABCD的边围成的图形(阴影部分)的面积为S.
(1)当OM经过点A时(如图①),则S、S1、S2之间的关系为:            (用含S1、S2的代数式表示);
(2)当OM⊥AB于G时(如图②),则(1)中的结论仍然成立吗?请说明理由;
(3)当旋转到任意位置时(如图③),则(1)中的结论仍然成立吗?请说明理由;

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

阅读资料:

如图1,在平面之间坐标系xOy中,A,B两点的坐标分别为A(x1,y1),B(x2,y2),由勾股定理得AB2=|x2-x1|2+|y2-y1|2,所以A,B两点间的距离为AB=
我们知道,圆可以看成到圆心距离等于半径的点的集合,如图2,在平面直角坐标系xoy中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA2=|x-0|2+|y-0|2,当⊙O的半径为r时,⊙O的方程可写为:x2+y2=r2
问题拓展:如果圆心坐标为P(a,b),半径为r,那么⊙P的方程可以写为          
综合应用:
如图3,⊙P与x轴相切于原点O,P点坐标为(0,6),A是⊙P上一点,连接OA,使tan∠POA=,作PD⊥OA,垂足为D,延长PD交x轴于点B,连接AB.
①证明AB是⊙P的切点;
②是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ为半径的⊙O的方程;若不存在,说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四边形OABC是平行四边形,以O为圆心,OA为半径的圆交AB于D,延长 AO交⊙O于E,连接CD,CE,若CE是⊙O的切线,解答下列问题:

(1)求证:CD是⊙O的切线;
(2)若平行四边形OABC的两边长是方程的两根,求平行四边形OABC的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(1)如图,正方形AEFG的顶点E、G在正方形ABCD的边AB、AD上,连接BF、DF.求证:BF=DF;
(2)如图,在▱ABCD中,AD=4,AB=8,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,求阴影部分的面积.(结果保留π)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1,AB为⊙O的直径,点P是直径AB上任意一点,过点P作弦CD⊥AB,垂足为P,过点B的直线与线段AD的延长线交于点F,且∠F=∠ABC.

(1)若CD=2,BP=4,求⊙O的半径;
(2)求证:直线BF是⊙O的切线;
(3)当点P与点O重合时,过点A作⊙O的切线交线段BC的延长线于点E,在其它条件不变的情况下,判断四边形AEBF是什么特殊的四边形?请在图2中补全图象并证明你的结论.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,△ABC是⊙O的内接三角形,AE是⊙O的直径,AF是⊙O的弦,且AF⊥BC于D点.

求证:(1)△ADC∽△ABE;
(2)BE=CF.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在直角坐标系中,已知,点P从C点出发,沿着折线C﹣D﹣A运动到达点A时停止,过C点作直线GC⊥PC,且与过O、P、C三点的⊙M交于点G,连接OP、PG、OD.

(1)直接写出∠DCO的度数;
(2)当点P在线段CD上运动时,求△OPG的最小面积;
(3)设圆心M的纵坐标为n,试探索:在点P运动的整个过程中,n的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,已知圆锥底面半径r=10cm,母线长为40cm.

(1)求它的侧面展开图的圆心角;
(2)若一甲虫从A点出发沿着圆锥侧面行到母线SA的中点B,求它所走的最短路线。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,⊙A与x轴相交于C(﹣2,0),D(﹣8,0)两点,与y轴相切于点B(0,4).

(1)求经过B,C,D三点的抛物线的函数表达式;
(2)设抛物线的顶点为E,证明:直线CE与⊙A相切;
(3)在x轴下方的抛物线上,是否存在一点F,使△BDF面积最大,最大值是多少?并求出点F的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,矩形OACB,A(0,3)、B(6,0),点E在线段OB上,∠AEO=30°,点从点Q(-4,0)出发,沿x轴向右以每秒1个单位长度的速度运动,运动时间为t秒.

(1)求点E的坐标;
(2)当∠PAE=15°时,求t的值;
(3)以点P为圆心,PA为半径的随点P的运动而变化,当与四边形AEBC的边(或边所在的直线)相切时,求t的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,半圆O的直径DE=12cm,Rt△ABC中,∠ACB=90°,∠ABC=30°,BC=12cm.半圆O以2cm/s的速度从左向右运动,在运动过程中,直径DE始终在直线BC上.设运动时间为t(s),当t=0(s)时,半圆O在△ABC的左侧,OC=8cm.

(1)外
当t=8(s)时,试判断点C与半圆O所在的圆的位置关系.

(2)当t为何值时,△ABC的一边所在直线与半圆O所在的圆相切.
(3)在(2)的条件下,如果半圆O与△ABC三边围成的区域有重叠部分,求重叠部分的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学圆幂定理解答题