某种以汽油为燃料的机器,加满油并开始工作后,油箱中的余油量y(升)与工作时间x(小时)之间的函数关系如图所示.
(1)求y与x的函数关系式;
(2)该机器的油箱加满后有多少升油?
我校需刻录一批电脑光盘,若到电脑公司刻录,每张需要4元(包括空白光盘费);若学校自刻,除买刻录机60元外,每张还需成本2元(包括空白光盘费),问刻录这批电脑光盘,到电脑公司刻录费用省,还是自刻费用省?请说明理由.
如图,已知反比例函数y=的图象与一次函数y=ax+b的图象相交于点A(1,4)和点B(n,﹣2).
(1)求反比例函数和一次函数的解析式;
(2)当一次函数的值小于反比例函数的值时,直接写出x的取值范围.
(1)求一次函y=2x﹣2的图象l1与y=x﹣1的图象l2的交点P的坐标.
(2)求直线l1与y轴交点A的坐标;求直线l2与x轴的交点B的坐标;
(3)求由三点P、A、B围成的三角形的面积.
杨佳明周日骑车从家里出发,去图书馆看书,
(1)若杨佳明骑车行驶的路程y(km)与时间t(min)的图象如图1所示,请说出线段AB所表示的实际意义: ;若杨佳明在第30分钟时以来时的速度原路返回,请在图上补出她返回时行驶的路程y(km)与时间t(min)的图象;
(2)在整个骑行过程中,若杨佳明离家的距离y(km)与时间t(min)的图象如图2所示,请说出线段AB所表示的实际意义: ;若杨佳明在第30分钟时以来时的速度原路返回,请在图上补出她返回时离家的距离y(km)与时间t(min)的图象;
(3)在整个骑行过程中,若杨佳明骑车的速度y(km/min)与时间t(min)的图象如图3所示,那么当她离家最远时,时间是在第 分钟,并求出她在骑行30分钟时的路程是 .
函数y=ax+b,当x=1时,y=1;当x=2时,y=﹣5.
(1)求a,b的值.
(2)当x=0时,求函数值y.
(3)当x取何值时,函数值y为0.
星期天8:00~8:30,燃气公司给平安加气站的储气罐注入天然气.之后,一位工作人员以每车20立方米的加气量,依次给在加气站排队等候的若干辆车加气.储气罐中的储气量y(立方米)与时间x(小时)的函数关系如图所示.
(1)8:00~8:30,燃气公司向储气罐注入了多少立方米的天然气;
(2)当x≥0.5时,求储气罐中的储气量y(立方米)与时间x(小时)的函数解析式;
(3)请你判断,正在排队等候的第18辆车能否在当天10:30之前加完气?请说明理由.
某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.
(1)请你帮助学校设计所有可行的租车方案;
(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?
一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.
(1)农民自带的零钱是多少?
(2)试求降价前y与x之间的关系式?
(3)由表达式你能求出降价前每千克的土豆价格是多少?
(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?
已知A(8,0)及在第一象限的动点P(x,y),且x+y=10,设△OPA的面积为S
(1)求S关于x的函数表达式;
(2)求x的取值范围;
(3)求S=12时P点坐标;
(4)画出函数S的图象.
正比例函数y=kx和一次函数y=ax+b的图象都经过点A(1,2),且一次函数的图象交x轴于点B(4,0).求正比例函数和一次函数的表达式.
已知函数y=(2m+1)x+m﹣3.
(1)若这个函数的图象经过原点,求m的值
(2)若这个函数的图象不经过第二象限,求m的取值范围.