如图,直线a,b相交于点O,若∠1等于50°,则∠2等于( )
A.50° | B.40° | C.140° | D.130° |
两个一次函数y=ax+b和y=bx+a在同一直角坐标系中的图象可能是( )
如图,点A的坐标为(-2,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为( )
A.(,) | B.(,) | C.(0,0) | D.(-1,-1) |
下列各点,在一次函数y=2x+6的图象上的是( )
A.(﹣5,4) | B.(﹣3.5,1) | C.(4,20) | D.(﹣3,0) |
某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系 .
将直线y=3x+1平移向下平移4个单位,则平移后的解析式为 .
过点P(8,2)且与直线y=x+1平行的一次函数解析式为_________.
某气球内充满一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.
(1)写出这一函数的表达式.
(2)当气体体积为1 m3时,气压是多少?
(3)当气球内的气压大于140 kPa时,气球将爆炸,为了安全考虑,气体的体积应不小于多少?
如图,正比例函数的图象与反比例函数的图象相交于A,B两点,其中点A的横坐标为2,当时,x的取值范围是( )
A.x<﹣2或x>2 |
B.x<﹣2或0<x<2 |
C.﹣2<x<0或0<x<﹣2 |
D.﹣2<x<0或x>2 |
为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=-2x+80.设这种产品每天的销售利润为w元.
(1)求w与x之间的函数关系式;
(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大是多少元?
(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?
已知直线l为x+y=8,点P(x,y)在l上,且x>0,y>0,点A的坐标为(6,0).
(1)设△OPA的面积为S,求S与x的函数关系式,并直接写出x的取值范围;
(2)当S=9时,求点P的坐标;
(3)在直线l上有一点M,使OM+MA的和最小,求点M的坐标.