初中数学

某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表:

家电名称
空调
彩电
冰箱
工 时


1
2



1
3



1
4

产值(千元)
4
3
2

 
问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高?最高产值是多少?(以千元为单位)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

一次函数y=﹣2x+4的图象与x轴交点坐标是      ,与y轴交点坐标是      ,图象与坐标轴所围成的三角形面积是     

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某商场欲购进果汁饮料和碳酸饮料共50箱,果汁饮料毎箱进价为55元,售价为63元;碳酸饮料毎箱进价为36元,售价为42元;设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为W元(注,总利润=总售价﹣总进价),
(1)设商场购进碳酸饮料y箱,直接写出y与x的函数关系式;
(2)求总利润w关于x的函数关系式;
(3)如果购进两种饮料的总费用不超过2000元,那么该商场如何进货才能获利最多?并求出最大利润.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知点(-2,y),(3 , y)都在直线y=kx-1上,且k小于0,则y与y的大小关系是(  )

A.y<y B.y=y C.y>y D.不能比较
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

直线y=ax+b经过第一、二、四象限,则直线y=bx﹣a的图象只能是图中的(  )

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

关于x的一次函数y=kx+k2+1的图象可能正确的是( )

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

【实际情境】
某中学九年级学生步行到郊外春游.一班的学生组成前队,速度为4km/h,二班的学生组成后队,速度为6km/h.前队出发1h后,后队才出发,同时,后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12km/h.
【数学研究】
若不计队伍的长度,如图,折线A-B-C、A-D-E分别表示后队、联络员在行进过程中,离前队的路程y(km)与后队行进时间x(h)之间的部分函数图象.

(1)求线段AB对应的函数关系式;
(2)求点E的坐标,并说明它的实际意义;
(3)联络员从出发到他折返后第一次与后队相遇的过程中,当x为何值时,他离前队的路程与他离后队的路程相等?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在同一平面直角坐标系中,函数y=kx+k和函数y=﹣kx2+4x+4(k是常数,且k≠0)的图象可能是(  )   

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系         

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

将直线y=3x+1平移向下平移4个单位,则平移后的解析式为     

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

过点P(8,2)且与直线y=x+1平行的一次函数解析式为_________.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某气球内充满一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.

(1)写出这一函数的表达式.
(2)当气体体积为1 m3时,气压是多少?
(3)当气球内的气压大于140 kPa时,气球将爆炸,为了安全考虑,气体的体积应不小于多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,正比例函数的图象与反比例函数的图象相交于A,B两点,其中点A的横坐标为2,当时,x的取值范围是( )

A.x<﹣2或x>2
B.x<﹣2或0<x<2
C.﹣2<x<0或0<x<﹣2
D.﹣2<x<0或x>2
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=-2x+80.设这种产品每天的销售利润为w元.
(1)求w与x之间的函数关系式;
(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大是多少元?
(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知直线l为x+y=8,点P(x,y)在l上,且x>0,y>0,点A的坐标为(6,0).

(1)设△OPA的面积为S,求S与x的函数关系式,并直接写出x的取值范围;
(2)当S=9时,求点P的坐标;
(3)在直线l上有一点M,使OM+MA的和最小,求点M的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学一次函数的最值试题