已知二次函数y=x2+2x-3.
(1)求此二次函数的图象与x轴的交点坐标;
(2)此二次函数的图象经怎样平移,使顶点变为A(3,0),请你描述平移的过程.
在平面直角坐标系中,抛物线C1:y=ax2-1
(1)若抛物线过点A(1,0),求抛物线C1的解析式;
(2)将(1)中的抛物线C1平移,使其顶点在直线L1:y=x上,得到抛物线C2,若直线L1与抛物线C2交于点C、D,求线段CD的长;
(3)将(1)中的抛物线C1绕点A旋转1800后得到抛物线C3,直线y=kx-2k+4与抛物线C3只有唯一交点,求符合条件的直线l的解析式。
已知抛物线 y=ax2+bx+3 (a≠0) 经过A(5,0), B(6,1)两点,且与y轴交于点C.
(1)求抛物线y=ax2+bx+3(a≠0)的函数关系式及点C的坐标;
(2)如图(1),连接AB,在题(1)中的抛物线上是否存在点P,使△PAB是以AB为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;
(3)如图(2),连接AC,E为线段AC上任意一点(不与A重合)经过A、E、O三点的圆交直线AB于点F,求出当△OEF的面积取得最小值时,点E的坐标.
在作二次函数与一次函数的图象时,先列出如下表:
请你根据表格信息回答问题,当>时,自变量x的取值范围是 .
阅读材料,解答问题:
若两个二次函数图象的顶点,开口方向都相同,则称这两个二次函数为“同簇二次函数”.
(1)下列各组二次函数中,是“同簇二次函数”的是 (填序号);
①y=x2+1与y=2x2;
②y=x2+2x+2与y=2(x-1)2+1;
③y=-x2-2x+3与y=-(x+1)2+4
(2)已知关于x的二次函数y1=2x2-4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A(1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式.
二次函数y=a(x-1)2+k(a>0)中x、y的几组对应值如下表.
x |
-2 |
1 |
5 |
y |
m |
n |
p |
表中m、n、p的大小关系为 (用“<”连接)
抛物线y=﹣x2+(m﹣1)x+m与y轴交于点(0,3).
(1)求抛物线的解析式;
(2)求抛物线与坐标轴的交点坐标;
(3)①当x取什么值时,y>0?②当x取什么值时,y的值随x的增大而减小?
用配方法将二次函数y=x²-2x+1写成y=a(x-h)²+k的形式是( )
A.y=(x-2)²-1 | B.y=(x-1)²-1 |
C.y=(x-2)²-3 | D.y=(x-1)²-3 |
二次函数y=x2的图象向上平移2个单位,得到新的图象的二次函数表达式是( )
A.y=x2-2 | B.y=(x-2)2 |
C.y=x2+2 | D.y=(x+2)2 |
关于抛物线y=(x-1)2-2,下列说法中错误的是
A.顶点坐标为(1,-2) |
B.对称轴是直线x=1 |
C.当x>1时,y随x的增大而减小 |
D.开口方向向上 |
关于二次函数y=(x-1)2+2,则下列说法正确的是( )
A.当x=1时,y有最大值为2 |
B.当x=1时,y有最小值为2 |
C.当x=-1时,y有最大值为2 |
D.当x=-1时,y有最小值为2 |