初中数学

已知二次函数y=x2﹣4x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣4x+m=0的两个实数根是( )

A.x1=1,x2=﹣1 B.x1=﹣1,x2="2" C.x1=﹣1,x2="0" D.x1=1,x2=3
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

二次函数y=3x2的图象向左平移一个单位后函数解析式为(   )

A.y=3x2+1 B.y=3x2﹣1 C.y=3(x﹣1)2 D.y=3(x+1)2
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

抛物线y=-x2向左平移1个单位,再向上平移7个单位得到的抛物线的解析式是_______.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某工厂生产的某种产品按质量分为1 0个档次.第1档次(最低档次)的产品一天能生产7 6件,每件利润10元.每提高一个档次,每件利润增加2元,但一天产量减少4件.若生产第x档次的产品一天的总利润为1080元,求该产品的质量档次.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

二次函数y=ax2+bx+c(a≠0)的图象如图,下列结论正确的是( )
         

A.a<0
B.b2-4ac<0
C.当-1<x<3时,y>0
D.-=1
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

对于抛物线y=ax2+bx+c(a≠0),有下列说法:
①当b=a+c时,则抛物线y=ax2+bx+c一定经过一个定点(-1,0);
②若△=b2-4ac>0,则抛物线y=cx2+bx+a与x轴必有两个不同的交点;
③若b=2a+3c,则抛物线y=ax2+bx+c与x轴必有两个不同的交点;
④若a>0,b>a+c,则抛物线y=ax2+bx+c与x轴必有两个不同的交点;
其中正确的有              

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

若抛物线与x轴分别交于A、B两点,且m为整数,则AB=_  _______.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知抛物线的顶点在轴上,的值______________.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

抛物线y=﹣x2+(m﹣1)x+m与y轴交于点(0,3).
(1)求抛物线的解析式;
(2)求抛物线与坐标轴的交点坐标;
(3)①当x取什么值时,y>0?②当x取什么值时,y的值随x的增大而减小?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

用配方法将二次函数y=x²-2x+1写成y=a(x-h)²+k的形式是(   )

A.y=(x-2)²-1 B.y=(x-1)²-1
C.y=(x-2)²-3 D.y=(x-1)²-3
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

二次函数y=x2的图象向上平移2个单位,得到新的图象的二次函数表达式是(    )

A.y=x2-2 B.y=(x-2)2
C.y=x2+2 D.y=(x+2)2
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

关于抛物线y=(x-1)2-2,下列说法中错误的是

A.顶点坐标为(1,-2)
B.对称轴是直线x=1
C.当x>1时,y随x的增大而减小
D.开口方向向上
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

二次函数y=-x2+2x+4的最大值为( )

A.3 B.4 C.5 D.6
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

关于二次函数y=(x-1)2+2,则下列说法正确的是(    )

A.当x=1时,y有最大值为2
B.当x=1时,y有最小值为2
C.当x=-1时,y有最大值为2
D.当x=-1时,y有最小值为2
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

下列函数中,不属于二次函数的是(    )

A.y=(x﹣2)2 B.y=﹣2(x+1)(x﹣1)
C.y=1﹣x﹣x2 D.y=
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学二次函数在给定区间上的最值试题