某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售。
(1)求平均每次下调的百分率。
(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元。
试问哪种方案更优惠?
某公司实行年工资制,职工的年工资由基础工资、住房补贴和医疗费三项组成,具体规定如下:
项目 |
第一年的工资(万元) |
一年后的计算方法 |
基础工资 |
1 |
每年的增长率相同 |
住房补贴 |
0.04 |
每年增加0.04 |
医疗费 |
0.1384 |
固定不变 |
设基础工资每年的增长率为,用含的代数式表示第三年的基础工资为 万元.
某人在公司工作了3年,他算了一下这3年拿到的住房补贴和医疗费正好是这3年基础工资总额的18%,问基础工资每年的增长率是多少?
在锐角△ABC中,AB=AC,∠A使关于x的方程-sinA x+sinA-=0有两个相等的实数根.
判断△ABC的形状;
设D为BC上的一点,且DE⊥AB于E,DF⊥AC于F,若DE=m,DF=n,且3m=4n和m2+n2=25,求AB的长.
已知,在矩形ABCD中,AB=a,BC=b,动点M从点A出发沿边AD向点D运动.
(1)如图1,当b=2a,点M运动到边AD的中点时,请证明∠BMC=90°;
(2)如图2,当b>2a时,点M在运动的过程中,是否存在∠BMC=90°,若存在,请给与证明;若不存在,请说明理由;
(3)如图3,当b<2a时,(2)中的结论是否仍然成立?请说明理由.
某农场去年种植了10亩地的南瓜,亩产量为2000千克,根据时常需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,已知南瓜的种植面积的增长率是亩产量的增长率的2倍,今年南瓜的总产量为60000千克,求南瓜亩产量的增长率。
(本题12分)已知,如图,在平面直角坐标系中,点A、B的横坐标恰好是方程的解,点C的纵坐标恰好是方程的解,点P从C点出发沿y轴正方向以1个单位/秒的速度向上运动,连PA、PB,D为AC的中点.
1)求直线BC的解析式;
2)设点P运动的时间为t秒,问:当t为何值时,DP与DB垂直且相等?
3)如图2,若PA=AB,在第一象限内有一动点Q,连QA、QB、QP,且∠PQA=60°,问:当Q在第一象限内运动时,∠APQ+∠ABQ的度数和是否会发生改变?若不变,请说明理由并求其值.
为建设美丽家园,某企业逐年增加对环境保护的经费投入,2012年投入了400万元,预计到2014年将投入576万元.
(1)求2012年至2014年该单位环保经费投入的年平均增长率;
(2)该单位预计2015年投入环保经费不低于680万元,若继续保持前两年的年平均增长率,该目标能否实现?请通过计算说明理由.
我县某楼盘准备以每平方米4000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米3240元的均价开盘销售.
(1)求平均每次下调的百分率.
(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?
解方程
(1)x2-10x=96
(2)阅读下面的例题:
解方程x2-|x|-2=0.
解:分两种情况讨论:
①当x≥0时,原方程化为x2-x-2=0.
解得:x1=2,x2=-1(不合题意,舍去);
②当x<0时,原方程化为x2+x-2=0.
解得:x1=-2,x2=1(不合题意,舍去);
综上所述,原方程的根是x1=2,x2=-2.
请参照前面的例题的解法解方程:x2-|x-1|-1=0
随着人们环保意识的不断增强,我市家庭电动自行车的拥有量逐年增加.据统计,某小区2009年底拥有家庭电动自行车125辆,2011年底家庭电动自行车的拥有量达到180辆.
(1)若该小区2009年底到2012年底家庭电动自行车拥有量的年平均增长率相同,则该小区到2012年底电动自行车将达到多少辆?
(2)为了缓解停车矛盾,该小区决定投资3万元再建若干个停车位,据测算,建造费用分别为室内车位1000元/个,露天车位200元/个.考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,则该小区最多可建两种车位各多少个?试写出所有可能的方案.
某百货大搂服装柜在销售中发现:“七彩”牌童装平均每天可售出20件,每件盈利40元.为了迎接“元旦”,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.
(1)要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?
(2)用配方法说明:要想盈利最多,每件童装应降价多少元?