将图1中的正方形剪开得到图2,图2 中共有4个正方形;将图2中一个正方形剪开得到图3,图3中共有7个正方形;将图3中一个正方形剪开得到图4,图4中共有10个正方形;……; 如此下去.则图10中正方形的个数是 ( )
A.28 | B.29 | C.31 | D.32 |
为促进“平安重庆”建设,市公安局交巡警总队拟在我市某“三角形”转盘区域内新增一个交巡警平 台,使交巡警平台到三个十字路 a 的距离相等,试确定交巡警平台 P的位置.(要求:用尺规作图, 保留作图痕迹,不写已知、求作和作法).
用边长为1的正方形做了一套七巧板,拼成如图1所示的一座桥,则桥中阴影部分的面积为原正方形面积的( )
A. | B. | C. | D.不能确定 |
如图所示,是我们常用的一副三角板.请你用一副三角板画出度数分别为15°和135°的两个角.(要求:保留画图痕迹)
(2)
在下面的方格纸中经过点C画与线段AB互相平行 的直线l1,再经过点B画一条与线段AB垂直的直线l2.
如图是图形的操作过程(四个矩形水平方向的边长均为a,竖立方向的边长均为b):将线段A1A2向右平移1个单位得到B1B2,得到封闭图形A1A2B2B1[即阴影部分如图(1)];将折线A1A2A3向右平移1个单位得到B1B2B3,得到封闭图形A1A2A3B3B2B1[即阴影部分如图(2)].
(1)在图(3)中,请你类似地画出一条有两个折点的直线,同样向右平移1个单位,从而得到1个封闭图形,并画出阴影.
(2)请你分别写出上述三个阴影部分外的面积S1= ,S2= ,S3= .
(3)联想与探索:如图(4),在一矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位).请你猜想空白部分草地面积是多少?
如果一个点能与另外两个点能构成直角三角形,则称这个点为另外两个点的勾股点.例如:矩形ABCD中,点C与A,B两点可构成直角三角形ABC,则称点C为A,B两点的勾股点.同样,点D也是A,B两点的勾股点.
(1)如图1,矩形ABCD中,AB=2,BC=1,请在边CD上作出A,B两点的勾股点(点C和点D除外)(要求:尺规作图,保留作图痕迹,不要求写作法);
(2)矩形ABCD中,AB=3,BC=1,直接写出边CD上A, B两点的勾股点的个数;
(3)如图2,矩形ABCD中,AB=12,BC=4,DP=4,DM=8,AN=5.过点P作直线l平行于BC,点H为M,N两点的勾股点,且点H在直线l上.求PH的长.
如图,零件的外径为16cm,要求它的壁厚x,需要先求出内径AB,现用一个交叉钳(AD与BC相等)去量,若测得OA︰OD=OB︰OC=3︰1,CD=5cm,你能求零件的壁厚x吗?
如图,AB是⊙O的弦,半径OA=2,∠AOB=120°,则弦AB的长是( )
A. | B.2 | C. | D. |
小颖按如图所示的程序输入一个正数x,最后输出的结果为656,则满足条件的x的不同值最多有 ▲ 个.
如图4,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于
A.4.5米 | B.6米 | C.7.2米 | D.8米 |
如图,某同学在测量建筑物AB的高度时,在地面的C处测得点A的仰角为30°,向前走60米到达D处,在D处测得点A的仰角为45°,求建筑物AB的高度.
如图,一个直径为8cm的杯子,在它的正中间竖直放一根筷子,筷子露出杯子外1cm,当筷子倒向杯壁时(筷子底端不动),筷子顶端刚好触到杯口,求筷子长度和杯子的高度。
某校九年级数学兴趣小组的同学开展了测量湘江宽度的活动.
如图,他们在河东岸边的点测得河西岸边的标志物在它的正西方向,然后从点出发沿河岸向正北方向行进550米到点处,测得在点的南偏西60°方向上,他们测得的湘江宽度是多少米?
(结果保留整数,参考数据:,)