初中数学

如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.点D,E,F分别是边AB,BC,AC的中点,连接DE、DF,动点P,Q分别从点A、B同时出发,运动速度均为1cm/s,点P沿AFD的方向运动到点D停止;点Q沿BC的方向运动,当点P停止运动时,点Q也停止运动.在运动过程中,过点Q作BC的垂线交AB于点M,以点P,M,Q为顶点作平行四边形PMQN.设平行四边形边形PMQN与矩形FDEC重叠部分的面积为y(cm2)(这里规定线段是面积为0的几何图形),点P运动的时间为x(s)

(1)当点P运动到点F时,CQ=   cm;
(2)在点P从点F运动到点D的过程中,某一时刻,点P落在MQ上,求此时BQ的长度;
(3)当点P在线段FD上运动时,求y与x之间的函数关系式.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

用半径为10cm,圆心角为216°的扇形做成一个圆锥的侧面,则这个圆锥的高为     cm.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

图为手的示意图,在各个手指间标记A,B,C,D请你按图中箭头所指方向(A→B→C→D→C→B→A→B→C→ 的方式),从A开始数连续正整数1,2,3,4 当数到2011时,其对应的字母是

A.A B.B C. C D.D
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在平面内,两条直线l1l2相交于点O,对于平面内任意一点M,若pq分别是点M到直线l1l2,的距离,则称(pq)为点M的“距离坐标”.根据上述规定,“距离坐标”是(3,2)的点共有             个.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在△ABC中,AD是BC边上的中线,如果,那么       (用表示).

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:
(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求?
(2)至少需要选择多少个安装点,才能使这些点安装了这种转发装置后达到预设的要求?
答题要求:请你在解答时,画出必要的示意图,并用必要的计算、推理和文字来说明你的理由.(下面给出了几个边长为30km的正方形城区示意图,供解题时选用)

图1               图2                  图3                图4

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长.
小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.请按照小萍的思路,探究并解答下列问题:
(1) 分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,求证:四边形AEGF是正方形;
(2) 设AD=x,建立关于x的方程模型,求出x的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

下列命题中,正确的是                                        (     )

A.四边相等的四边形是正方形 B.四角相等的四边形是正方形
C.对角线相等的菱形是正方形 D.对角线垂直且相等的四边形是正方形
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,,,,,……,以为对角线作第一个正方形,以为对角线作第二个正方形,以为对角线作第三个正方形,……,顶点,……都在第一象限,按照这样的规律依次进行下去,点的坐标为_________________.
               

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知:如图(1),在平行四边形ABCD中,对角线CA⊥BA,AB=AC=8cm,四边形A1B1C1D1是平行四边形ABCD绕点A按逆时针方向旋转45°得到的,A1D1经过点C,B1C1分别与AB、BC相交于点P、Q.
(1)求四边形CD1C1Q的周长;(保留无理数,下同)
(2)求两个平行四边形重合部分的四边形APQC的面积S;
(3)如图(2),将平行四边形A1B1C1D1以每秒1cm的速度向右匀速运动,当运动到B1C1在直线AC上时停止运动.设运动的时间为x(秒),两个平行四边形重合部分的面积为y(cm2).求y关于x的函数关系式,并探索是否存在一个时刻x,使得y取最大值,若存在,请你求出这个最大值;若不存在,请你说明理由.

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.4环,
方差分别是,,,.在本次射击测试中,成绩最
稳定的是

A.甲 B.乙 C.丙 D.丁
来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

随机从甲、乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果为:,则小麦长势比较整齐的试验田是   (填“甲”或“乙”)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC=60°.将一把直角三角尺的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方,其中∠OMN=30°。

(1)将图1中的三角尺绕点O顺时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,求∠CON的度数;
(2)将图1中的三角尺绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,在第        秒时,边MN恰好与射线OC平行;在第        秒时,直线ON恰好平分锐角∠AOC。(直接写出结果);
(3)将图1中的三角尺绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究∠AOM与∠NOC之间的数量关系,并说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,已知抛物线经过O(0,0),A(4,0),B(3,)三点,连接AB,过点B作BC∥轴交该抛物线于点C.

求这条抛物线的函数关系式.
两个动点P、Q分别从O、A同时出发,以每秒1个单位长度的速度运动. 其中,点P沿着线段0A向A点运动,点Q沿着线段AB向B点运动. 设这两个动点运动的时间为(秒) (0<≤2),△PQA的面积记为S.
① 求S与的函数关系式;
② 当为何值时,S有最大值,最大值是多少?并指出此时△PQA的形状;
是否存在这样的值,使得△PQA是直角三角形?若存在,请直接写出此时P、Q两点的坐标;若不存在,请说明理由.

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

老师问ABCDE五位学生:“昨天你们有几个人玩过游戏?”他们的回答分别为A
没有人;B:一个人;C:二个人;D;三个人;E:四个人。老师知道:他们之中有人玩过
游戏,也有人没有玩过游戏。若没有玩过游戏的人说的是真话,那么他们5个人中有     
人玩过游戏。

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学应用类问题试题