如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.点D,E,F分别是边AB,BC,AC的中点,连接DE、DF,动点P,Q分别从点A、B同时出发,运动速度均为1cm/s,点P沿AFD的方向运动到点D停止;点Q沿BC的方向运动,当点P停止运动时,点Q也停止运动.在运动过程中,过点Q作BC的垂线交AB于点M,以点P,M,Q为顶点作平行四边形PMQN.设平行四边形边形PMQN与矩形FDEC重叠部分的面积为y(cm2)(这里规定线段是面积为0的几何图形),点P运动的时间为x(s)
(1)当点P运动到点F时,CQ= cm;
(2)在点P从点F运动到点D的过程中,某一时刻,点P落在MQ上,求此时BQ的长度;
(3)当点P在线段FD上运动时,求y与x之间的函数关系式.
一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:
(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求?
(2)至少需要选择多少个安装点,才能使这些点安装了这种转发装置后达到预设的要求?
答题要求:请你在解答时,画出必要的示意图,并用必要的计算、推理和文字来说明你的理由.(下面给出了几个边长为30km的正方形城区示意图,供解题时选用)
图1 图2 图3 图4
如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长.
小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.请按照小萍的思路,探究并解答下列问题:
(1) 分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,求证:四边形AEGF是正方形;
(2) 设AD=x,建立关于x的方程模型,求出x的值.
已知:如图(1),在平行四边形ABCD中,对角线CA⊥BA,AB=AC=8cm,四边形A1B1C1D1是平行四边形ABCD绕点A按逆时针方向旋转45°得到的,A1D1经过点C,B1C1分别与AB、BC相交于点P、Q.
(1)求四边形CD1C1Q的周长;(保留无理数,下同)
(2)求两个平行四边形重合部分的四边形APQC的面积S;
(3)如图(2),将平行四边形A1B1C1D1以每秒1cm的速度向右匀速运动,当运动到B1C1在直线AC上时停止运动.设运动的时间为x(秒),两个平行四边形重合部分的面积为y(cm2).求y关于x的函数关系式,并探索是否存在一个时刻x,使得y取最大值,若存在,请你求出这个最大值;若不存在,请你说明理由.
如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC=60°.将一把直角三角尺的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方,其中∠OMN=30°。
(1)将图1中的三角尺绕点O顺时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,求∠CON的度数;
(2)将图1中的三角尺绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,在第 秒时,边MN恰好与射线OC平行;在第 秒时,直线ON恰好平分锐角∠AOC。(直接写出结果);
(3)将图1中的三角尺绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究∠AOM与∠NOC之间的数量关系,并说明理由.
如图,已知抛物线经过O(0,0),A(4,0),B(3,)三点,连接AB,过点B作BC∥轴交该抛物线于点C.
求这条抛物线的函数关系式.
两个动点P、Q分别从O、A同时出发,以每秒1个单位长度的速度运动. 其中,点P沿着线段0A向A点运动,点Q沿着线段AB向B点运动. 设这两个动点运动的时间为(秒) (0<≤2),△PQA的面积记为S.
① 求S与的函数关系式;
② 当为何值时,S有最大值,最大值是多少?并指出此时△PQA的形状;
是否存在这样的值,使得△PQA是直角三角形?若存在,请直接写出此时P、Q两点的坐标;若不存在,请说明理由.
(1)在遇到问题:“钟面上,如果把时针与分针看作是同一平面内的两条线段,在2∶00~2∶15之间,时针与分针重合的时刻是多少?”时,小明尝试运用建立函数关系的方法:
①恰当选取变量x和y.小明设2点钟之后经过x min(0≤x≤15),时针、分针分别与竖轴线(即经过表示“12”和“6”的点的直线,如图1)所成的角的度数为y1°、y2°;
②确定函数关系.由于时针、分针在单位时间内转动的角度不变,因此既可以直接写出y1、y2关于x的函数关系式,也可以画出它们的图象.小明选择了后者,画出了图2;
③根据题目的要求,利用函数求解.本题中小明认为求出两个图象交点的横坐标就可以解决问题.
请你按照小明的思路解决这个问题.
(2)请运用建立函数关系的方法解决问题:钟面上,如果把时针与分针看作是同一平面内
的两条线段,在7∶30~8∶00之间,时针与分针互相垂直的时刻是多少?
一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方
形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全
覆盖这个城市.问:
(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求?在图1中画出安装点的示意图,并用大写字母M、N、P、Q表示安装点;
(2)能否找到这样的3个安装点,使得在这些点安装了这种转发装置后能达到预设的要求?在图2中画出示意图说明,并用大写字母M、N、P表示安装点,用计算、推理和文字来说明你的理由.
(本小题满分10分)如图1,点C将线段AB分成两部分,如果AB : AC="AC" : BC,那么称点C为线段的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线将一个面积为S的图形分成两部分,这两部分的面积分别为S1: S2,如果S : S1= S1: S2,,那么称直线为该图形的黄金分割线.
(1)研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点(如图2),则直线CD是△ABC的黄金分割线.你认为对吗?为什么?
(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?
(3)研究小组探究发现:在(1)中,过点C任作AE交AB于E,再过点D作,交 AC于点F,连接EF(如图3),则直线EF是△ABC的黄金分割线.请说明理由.
(4)如图4,点E是ABCD的边AB的黄金分割点,过点E作,交DC于点F,显然直线EF是ABCD的黄金分割线.请你再画一条ABCD的黄金分割线,使它不经过ABCD各边黄金分割点(保留必要的辅助线).
(11·贺州)
某生姜种植基地计划种植A、B两种生姜30亩.已知A、B两种生姜的年产量分别为2 000千克/亩、2 500千克/亩,收购单价分别是8元/千克、7元/千克.
(1)若该基地收获两种生姜的年总产量为68 000千克,求A、B两种生姜各种多少亩?
(2)若要求种植A种生姜的亩数不少于B种的一半,那么种植A、B两种生姜各多少亩时,
全部收购该基地生姜的年总收入最多?最多是多少元?
△ABC是一张等腰直角三角形纸板,∠C=Rt∠,AC=BC=2,
(1)要在这张纸板中剪出一个尽可能大的正方形,有甲、乙两种剪法(如图1),比较甲、乙两种剪法,哪种剪法所得的正方形面积大?请说明理由.
(2)图1中甲种剪法称为第1次剪取,记所得正方形面积为s1;按照甲种剪法,在余下的△ADE和△BDF中,分别剪取正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为s2(如图2),则s2=;再在余下的四个三角形中,用同样方法分别剪取正方形,得到四个相同的正方形,称为第3次剪取,并记这四个正方形面积和为s3,继续操作下去…,则第10次剪取时,s10=;
(3)求第10次剪取后,余下的所有小三角形的面积之和.
阅读材料:如图①,一扇窗户打开后用窗钩可将其固定.
(1)这里所运用的几何原理是( )
A.三角形的稳定性 | B.两点之间线段最短 |
C.两点确定一条直线 | D.垂线段最短 |
(2)如图②是图①中窗子开到一定位置时的平面图,若,,=60cm,求点到边的距离.(结果保留根号)
2010年5月中央召开了新疆工作座谈会,为实现新疆跨越式发展和长治久安,作出了重要战略决策部署.为此我市抓住机遇,加快发展,决定今年投入5亿元用于城市基础设施维护和建设,以后逐年增加,计划到2012年当年用于城市基础设施维护与建设资金达到8.45亿元.
(1)求从2010年至2012年我市每年投入城市基础设施维护和建设资金的年平均增长率;
(2)若2010年至2012年我市每年投入城市基础设施维护和建设资金的年平均增长率相同,
预计我市这三年用于城市基础设施维护和建设资金共多少亿元?
阅读材料,解答下列问题.
例:当时,如则,故此时的绝对值是它本身
当时,,故此时的绝对值是零
当时,如则,故此时的绝对值是它的相反数
综合起来一个数的绝对值要分三种情况,即
问:(1)这种分析方法涌透了 数学思想.
(2)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况.
(3)猜想与的大小关系.
(4)尝试用从以上探究中得到的结论来解决下面的问题: