初中数学

如图,在平面直角坐标系中,点 A的坐标为(4,3),那么cosα的值是(  )

A.

3 4

B.

4 3

C.

3 5

D.

4 5

来源:2016年广东省中考数学试卷
  • 更新:2021-02-24
  • 题型:未知
  • 难度:未知

如图, A 经过平面直角坐标系的原点 O ,交 x 轴于点 B ( - 4 , 0 ) ,交 y 轴于点 C ( 0 , 3 ) ,点 D 为第二象限内圆上一点.则 CDO 的正弦值是 (    )

A.

3 5

B.

- 3 4

C.

3 4

D.

4 5

来源:2020年内蒙古赤峰市中考数学试卷
  • 更新:2021-01-25
  • 题型:未知
  • 难度:未知

如图, A 经过平面直角坐标系的原点 O ,交 x 轴于点 B ( - 4 , 0 ) ,交 y 轴于点 C ( 0 , 3 ) ,点 D 为第二象限内圆上一点.则 CDO 的正弦值是 (    )

A.

3 5

B.

- 3 4

C.

3 4

D.

4 5

来源:2020年内蒙古赤峰市中考数学试卷
  • 更新:2021-01-17
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中,对角线 AC BD 相交于点 O ,点 E BC 边上,且 CE = 2 BE ,连接 AE BD 于点 G ,过点 B BF AE 于点 F ,连接 OF 并延长,交 BC 于点 M ,过点 O OP OF DC 于点 N S 四边形 MONC = 9 4 ,现给出下列结论:① GE AG = 1 3 ;② sin BOF = 3 10 10 ;③ OF = 3 5 5 ;④ OG = BG ;其中正确的结论有 (    )

A.

①②③

B.

②③④

C.

①②④

D.

①③④

来源:2020年辽宁省朝阳市中考数学试卷
  • 更新:2021-01-15
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, O 是对角线 AC BD 的交点, BE AC DF AC ,垂足分别为点 E F

(1)求证: OE = OF

(2)若 BE = 5 OF = 2 ,求 tan OBE 的值.

来源:2020年吉林省长春市中考数学试卷
  • 更新:2021-01-15
  • 题型:未知
  • 难度:未知

比萨斜塔是意大利的著名建筑,其示意图如图所示,设塔顶中心点为点 B ,塔身中心线 AB 与垂直中心线 AC 的夹角为 A ,过点 B 向垂直中心线 AC 引垂线,垂足为点 D .通过测量可得 AB BD AD 的长度,利用测量所得的数据计算 A 的三角函数值,进而可求 A 的大小.下列关系式正确的是 (    )

A.

sin A = BD AB

B.

cos A = AB AD

C.

tan A = AD BD

D.

sin A = AD AB

来源:2020年吉林省长春市中考数学试卷
  • 更新:2021-01-15
  • 题型:未知
  • 难度:未知

如图,由边长为1的小正方形构成的网格中,点 A B C 都在格点上,以 AB 为直径的圆经过点 C D ,则 sin ADC 的值为 (    )

A.

2 13 13

B.

3 13 13

C.

2 3

D.

3 2

来源:2020年江苏省扬州市中考数学试卷
  • 更新:2021-01-08
  • 题型:未知
  • 难度:未知

如图,点在反比例函数的图象上,且横坐标为1,过点作两条坐标轴的平行线,与反比例函数的图象相交于点,则直线轴所夹锐角的正切值为  

来源:2020年江苏省泰州市中考数学试卷
  • 更新:2021-01-08
  • 题型:未知
  • 难度:未知

如图,点在线段上,且,分别以为边在线段的同侧作正方形,连接,则   

来源:2020年江苏省常州市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图所示,的顶点在正方形对角线的延长线上,交于点,连接,满足

(1)求证:

(2)若正方形的边长为1,,求的值.

来源:2020年湖南省株洲市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 2 BC = 2 5 E BC 的中点,将 ΔABE 沿直线 AE 翻折,点 B 落在点 F 处,连结 CF ,则 cos ECF 的值为 (    )

A.

2 3

B.

10 4

C.

5 3

D.

2 5 5

来源:2020年湖北省咸宁市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 20 ,点 E BC 边上的一点,将 ΔABE 沿着 AE 折叠,点 B 刚好落在 CD 边上点 G 处;点 F DG 上,将 ΔADF 沿着 AF 折叠,点 D 刚好落在 AG 上点 H 处,此时 S ΔGFH : S ΔAFH = 2 : 3

(1)求证: ΔEGC ΔGFH

(2)求 AD 的长;

(3)求 tan GFH 的值.

来源:2020年湖北省荆州市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,在 6 × 6 的正方形网格中,每个小正方形的边长都是1,点 A B C 均在网格交点上, O ΔABC 的外接圆,则 cos BAC 的值为 (    )

A.

5 5

B.

2 5 5

C.

1 2

D.

3 2

来源:2020年湖北省荆州市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图1, AB O 的直径,直线 AM O 相切于点 A ,直线 BN O 相切于点 B ,点 C (异于点 A ) AM 上,点 D O 上,且 CD = CA ,延长 CD BN 相交于点 E ,连接 AD 并延长交 BN 于点 F

(1)求证: CE O 的切线;

(2)求证: BE = EF

(3)如图2,连接 EO 并延长与 O 分别相交于点 G H ,连接 BH .若 AB = 6 AC = 4 ,求 tan BHE

来源:2020年湖北省恩施州中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,在正方形中,,点在边上,连接,作于点于点,连接,设

(1)求证:

(2)求证:

(3)若点从点沿边运动至点停止,求点所经过的路径与边围成的图形的面积.

来源:2020年黑龙江省绥化市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

初中数学锐角三角函数的定义试题