如图,已知抛物线 与 轴交于 、 两点, ,交 轴于点 ,对称轴是直线 .
(1)求抛物线的解析式及点 的坐标;
(2)连接 , 是线段 上一点, 关于直线 的对称点 正好落在 上,求点 的坐标;
(3)动点 从点 出发,以每秒2个单位长度的速度向点 运动,过 作 轴的垂线交抛物线于点 ,交线段 于点 .设运动时间为 秒.
①若 与 相似,请直接写出 的值;
② 能否为等腰三角形?若能,求出 的值;若不能,请说明理由.
已知二次函数
(1)若 , ,
①求该二次函数图象的顶点坐标;
②定义:对于二次函数 ,满足方程 的 的值叫做该二次函数的"不动点".求证:二次函数 有两个不同的"不动点".
(2)设 ,如图所示,在平面直角坐标系 中,二次函数 的图象与 轴分别相交于不同的两点 , , , ,其中 , ,与 轴相交于点 ,连结 ,点 在 轴的正半轴上,且 ,又点 的坐标为 ,过点 作垂直于 轴的直线与直线 相交于点 ,满足 . 的延长线与 的延长线相交于点 ,若 ,求二次函数的表达式.
(1)如图1,在平行四边形ABCD中,∠A=30°,AB=6,AD=8,将平行四边形ABCD分割成两部分,然后拼成一个矩形,请画出拼成的矩形,并说明矩形的长和宽.(保留分割线的痕迹)
(2)若将一边长为1的正方形按如图2﹣1所示剪开,恰好能拼成如图2﹣2所示的矩形,则m的值是多少?
(3)四边形ABCD是一个长为7,宽为5的矩形(面积为35),若把它按如图3﹣1所示的方式剪开,分成四部分,重新拼成如图3﹣2所示的图形,得到一个长为9,宽为4的矩形(面积为36).问:重新拼成的图形的面积为什么会增加?请说明理由.
如图,在平面直角坐标系中,矩形的边,.若不改变矩形的形状和大小,当矩形顶点在轴的正半轴上左右移动时,矩形的另一个顶点始终在轴的正半轴上随之上下移动.
(1)当时,求点的坐标;
(2)设的中点为,连接、,当四边形的面积为时,求的长;
(3)当点移动到某一位置时,点到点的距离有最大值,请直接写出最大值,并求此时的值.
已知抛物线与轴分别交于,两点,与轴交于点.
(1)求抛物线的表达式及顶点的坐标;
(2)点是线段上一个动点.
①如图1,设,当为何值时,?
②如图2,以,,为顶点的三角形是否与相似?若相似,求出点的坐标;若不相似,请说明理由.
在等腰三角形中,,作交于点,交于点.
(1)在图1中,求证:;
(2)在图2中的线段上取一动点,过作交于点,作交于点,求证:;
(3)在图3中动点在线段的延长线上,类似(2)过作交的延长线于点,作交的延长线于点,求证:.
(1)方法选择
如图①,四边形是的内接四边形,连接,,.求证:.
小颖认为可用截长法证明:在上截取,连接
小军认为可用补短法证明:延长至点,使得
请你选择一种方法证明.
(2)类比探究
[探究1]
如图②,四边形是的内接四边形,连接,,是的直径,.试用等式表示线段,,之间的数量关系,并证明你的结论.
[探究2]
如图③,四边形是的内接四边形,连接,.若是的直径,,则线段,,之间的等量关系式是 .
(3)拓展猜想
如图④,四边形是的内接四边形,连接,.若是的直径,,则线段,,之间的等量关系式是 .
如图1,在平面直角坐标系中,直线与轴,轴分别交于,两点,抛物线经过,两点,与轴的另一交点为.
(1)求抛物线解析式及点坐标;
(2)若点为轴下方抛物线上一动点,连接、、,当点运动到某一位置时,四边形面积最大,求此时点的坐标及四边形的面积;
(3)如图2,若点是半径为2的上一动点,连接、,当点运动到某一位置时,的值最小,请求出这个最小值,并说明理由.
已知:如图,在四边形中,,,,,垂直平分 .点从点出发,沿方向匀速运动,速度为;同时,点从点出发,沿方向匀速运动,速度为;当一个点停止运动,另一个点也停止运动.过点作,交于点,过点作,分别交,于点,.连接,.设运动时间为,解答下列问题:
(1)当为何值时,点在的平分线上?
(2)设四边形的面积为,求与的函数关系式;
(3)在运动过程中,是否存在某一时刻,使四边形的面积最大?若存在,求出的值;若不存在,请说明理由;
(4)连接,,在运动过程中,是否存在某一时刻,使?若存在,求出的值;若不存在,请说明理由.
如图,在平面直角坐标系中,抛物线与轴交于点,点,与轴交于点,连接.又已知位于轴右侧且垂直于轴的动直线,沿轴正方向从运动到(不含点和点),且分别交抛物线、线段以及轴于点,,.
(1)求抛物线的表达式;
(2)连接,,当直线运动时,求使得和相似的点的坐标;
(3)作,垂足为,当直线运动时,求面积的最大值.
如图1,在矩形中,,,是边上一点,连接,将矩形沿折叠,顶点恰好落在边上点处,延长交的延长线于点.
(1)求线段的长;
(2)如图2,,分别是线段,上的动点(与端点不重合),且,设,.
①写出关于的函数解析式,并求出的最小值;
②是否存在这样的点,使是等腰三角形?若存在,请求出的值;若不存在,请说明理由.
如图1,抛物线经过点、两点,是其顶点,将抛物线绕点旋转,得到新的抛物线.
(1)求抛物线的函数解析式及顶点的坐标;
(2)如图2,直线经过点,是抛物线上的一点,设点的横坐标为,连接并延长,交抛物线于点,交直线于点,若,求的值;
(3)如图3,在(2)的条件下,连接、,在直线下方的抛物线上是否存在点,使得?若存在,求出点的横坐标;若不存在,请说明理由.
如图,抛物线经过,,三点.
(1)求抛物线的函数表达式;
(2)如图1,为抛物线上在第二象限内的一点,若面积为3,求点的坐标;
(3)如图2,为抛物线的顶点,在线段上是否存在点,使得以,,为顶点的三角形与相似?若存在,求点的坐标;若不存在,请说明理由.
已知抛物线经过点、,与轴交于点.
(1)求这条抛物线的解析式;
(2)如图1,点是第三象限内抛物线上的一个动点,当四边形的面积最大时,求点的坐标;
(3)如图2,线段的垂直平分线交轴于点,垂足为,为抛物线的顶点,在直线上是否存在一点,使的周长最小?若存在,求出点的坐标;若不存在,请说明理由.