已知抛物线y=ax2+bx+3与x轴分别交于A(-3,0),B(1,0)两点,与y轴交于点C.
(1)求抛物线的表达式及顶点D的坐标;
(2)点F是线段AD上一个动点.
①如图1,设k=AFAD,当k为何值时,CF=12AD?
②如图2,以A,F,O为顶点的三角形是否与ΔABC相似?若相似,求出点F的坐标;若不相似,请说明理由.
观察并填空:如图:已知直线l1∥l2,且l3、l4和l1、l2分别交于点A、B和点D、C,点P在AB上,设∠ADP=∠1,∠DPC=∠2,∠BCP=∠3. (1)探究∠1、∠2、∠3之间的关系,并说明你的结论的正确性. (2)若点P在A、B两点之间运动时(点P和A、B不重合),∠1、∠2、∠3之间的关系发生变化(填“会”或“不会”); (3)如果点P在A、B两点外侧运动时,(点P和A、B不重合) ①当点P在射线AM上时,猜想∠1、∠2、∠3之间的关系为; ②当点P在射线BN上时,猜想∠1、∠2、∠3之间的关系为(不必证明).
如图是甲、乙两人同一地点出发后,路程随时间变化的图象. (1)此变化过程中,是自变量,是因变量; (2)甲的速度乙的速度(大于、等于、小于); (3)6时表示; (4)路程为150km,甲行驶了小时,乙行驶了小时; (5)9时甲在乙的(前面、后面、相同位置); (6)乙比甲先走了3小时,对吗?.
已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=35°,∠C=55° (1)求∠DAE的度数. (2)试写出 ∠DAE与∠C-∠B有何关系?(不必证明)
如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,∠3=75°.求∠BCA的度数.
如图,一束平行光线AB与DE射向一个水平镜面后被反射,此时∠1=∠2,∠3=∠4,由此你能得到反射光线有什么位置关系?试说明你的理由.