计算:|-3|-2tan60°+12+(13)-1.
如图13-1,若四边形ABCD、四边形GFED都是正方形,显然图中有AG=CE, AG⊥CE.(1)当正方形GFED绕D旋转到如图13-2的位置时,AG=CE是否成立?若成立,请给出证明;若不成立,请说明理由.(2)当正方形GFED绕D旋转到如图13-3的位置,点F在边AD上,延长CE交AG于H,交AD于M.①求证:AG⊥CH;②当AD=4,DG=时,求CM的长.
如图所示,制作一种产品,需将原材料加热,设该材料温度为y℃,从加热开始计算的时间为x分钟.据了解,该材料在加热过程中温度y与时间x成一次函数关系.已知该材料在加热前的温度为l5℃,加热5分钟使材料温度达到60℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y与时问x成反比例函数关系.(1)分别求出该材料加热和停止加热过程中y与x的函数关系(要写出x的取值范);(2)根据工艺要求,在材料温度不低于30℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理所用的时间为多少分钟?
六·一”儿童节前,某玩具商店根据市场调查,用2500元购进一批儿童玩具,上市后很快脱销,接着又用4500元购进了第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.(1)求第一批玩具每套的进价是多少元?(2)如果这两批玩具每套的售价相同,且全部售完后总利润不低于25%,那么每套售价至少是多少元?
一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.(1)求摸出1个球是白球的概率;(2)摸出1个球,记下颜色后放回,并搅均,再摸出1个球.求两次摸出的球恰好颜色不同的概率;(3)现再将n个白球放入布袋,搅均后,使摸出1个球是白球的概率为.求n的值.
如图,已知△ABC在平面直角坐标系中的位置如图所示.(1)图中点A的坐标为(0,4);点C的坐标为(3,1);(2)画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;(3)求(2)中线段CA旋转到C′A′所扫过的面积.