初中数学

[性质探究]

如图,在矩形 ABCD 中,对角线 AC BD 相交于点 O AE 平分 BAC ,交 BC 于点 E .作 DF AE 于点 H ,分别交 AB AC 于点 F G

(1)判断 ΔAFG 的形状并说明理由.

(2)求证: BF = 2 OG

[迁移应用]

(3)记 ΔDGO 的面积为 S 1 ΔDBF 的面积为 S 2 ,当 S 1 S 2 = 1 3 时,求 AD AB 的值.

[拓展延伸]

(4)若 DF 交射线 AB 于点 F ,[性质探究]中的其余条件不变,连结 EF ,当 ΔBEF 的面积为矩形 ABCD 面积的 1 10 时,请直接写出 tan BAE 的值.

来源:2020年浙江省衢州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.

(1)如图1, E ΔABC A 的遥望角,若 A = α ,请用含 α 的代数式表示 E

(2)如图2,四边形 ABCD 内接于 O AD ̂ = BD ̂ ,四边形 ABCD 的外角平分线 DF O 于点 F ,连结 BF 并延长交 CD 的延长线于点 E .求证: BEC ΔABC BAC 的遥望角.

(3)如图3,在(2)的条件下,连结 AE AF ,若 AC O 的直径.

①求 AED 的度数;

②若 AB = 8 CD = 5 ,求 ΔDEF 的面积.

来源:2020年浙江省宁波市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,正方形 ABOC 的两直角边分别在坐标轴的正半轴上,分别过 OB OC 的中点 D E AE AD 的平行线,相交于点 F ,已知 OB = 8

(1)求证:四边形 AEFD 为菱形.

(2)求四边形 AEFD 的面积.

(3)若点 P x 轴正半轴上(异于点 D ) ,点 Q y 轴上,平面内是否存在点 G ,使得以点 A P Q G 为顶点的四边形与四边形 AEFD 相似?若存在,求点 P 的坐标;若不存在,试说明理由.

来源:2020年浙江省金华市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,已知 AC BD O 的两条直径,连接 AB BC OE AB 于点 E ,点 F 是半径 OC 的中点,连接 EF

(1)设 O 的半径为1,若 BAC = 30 ° ,求线段 EF 的长.

(2)连接 BF DF ,设 OB EF 交于点 P

①求证: PE = PF

②若 DF = EF ,求 BAC 的度数.

来源:2020年浙江省杭州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图1,已知四边形 ABCD 是矩形,点 E BA 的延长线上, AE = AD EC BD 相交于点 G ,与 AD 相交于点 F AF = AB

(1)求证: BD EC

(2)若 AB = 1 ,求 AE 的长;

(3)如图2,连接 AG ,求证: EG - DG = 2 AG

来源:2020年安徽省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

将正方形 ABCD 的边 AB 绕点 A 逆时针旋转至 AB ' ,记旋转角为 α ,连接 BB ' ,过点 D DE 垂直于直线 BB ' ,垂足为点 E ,连接 DB ' CE

(1)如图1,当 α = 60 ° 时, ΔDEB ' 的形状为   ,连接 BD ,可求出 BB ' CE 的值为  

(2)当 0 ° < α < 360 ° α 90 ° 时,

①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;

②当以点 B ' E C D 为顶点的四边形是平行四边形时,请直接写出 BE B ' E 的值.

来源:2020年河南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

抛物线 y = x 2 + bx + c x 轴交于 A B 两点,与 y 轴交于点 C ,点 A 的坐标为 ( - 1 , 0 ) ,点 C 的坐标为 ( 0 , - 3 ) .点 P 为抛物线 y = x 2 + bx + c 上的一个动点.过点 P PD x 轴于点 D ,交直线 BC 于点 E

(1)求 b c 的值;

(2)设点 F 在抛物线 y = x 2 + bx + c 的对称轴上,当 ΔACF 的周长最小时,直接写出点 F 的坐标;

(3)在第一象限,是否存在点 P ,使点 P 到直线 BC 的距离是点 D 到直线 BC 的距离的5倍?若存在,求出点 P 所有的坐标;若不存在,请说明理由.

来源:2020年云南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图1,在矩形 ABCD 中, AB = 5 BC = 8 ,点 E F 分别为 AB CD 的中点.

(1)求证:四边形 AEFD 是矩形;

(2)如图2,点 P 是边 AD 上一点, BP EF 于点 O ,点 A 关于 BP 的对称点为点 M ,当点 M 落在线段 EF 上时,则有 OB = OM .请说明理由;

(3)如图3,若点 P 是射线 AD 上一个动点,点 A 关于 BP 的对称点为点 M ,连接 AM DM ,当 ΔAMD 是等腰三角形时,求 AP 的长.

来源:2020年云南省昆明市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

已知:如图,在菱形 ABCD 中,点 E F 分别在边 BC CD 上, BE = FD AF 的延长线交 BC 的延长线于点 H AE 的延长线交 DC 的延长线于点 G

[小题1]求证: ΔAFD ΔGAD

[小题2]如果 D F 2 = CF · CD ,求证: BE = CH

来源:2020年上海市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在直角梯形 ABCD 中, AB / / DC DAB = 90 ° AB = 8 CD = 5 BC = 3 5

(1)求梯形 ABCD 的面积;

(2)联结 BD ,求 DBC 的正切值.

[小题1]求梯形 ABCD 的面积;

[小题2]联结 BD ,求 DBC 的正切值.

来源:2020年上海市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

综合与探究

如图,抛物线 y = 1 4 x 2 - x - 3 x 轴交于 A B 两点(点 A 在点 B 的左侧),与 y 轴交于点 C .直线 l 与抛物线交于 A D 两点,与 y 轴交于点 E ,点 D 的坐标为 ( 4 , - 3 )

(1)请直接写出 A B 两点的坐标及直线 l 的函数表达式;

(2)若点 P 是抛物线上的点,点 P 的横坐标为 m ( m 0 ) ,过点 P PM x 轴,垂足为 M PM 与直线 l 交于点 N ,当点 N 是线段 PM 的三等分点时,求点 P 的坐标;

(3)若点 Q y 轴上的点,且 ADQ = 45 ° ,求点 Q 的坐标.

来源:2020年山西省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积 S 1 S 2 S 3 之间的关系问题”进行了以下探究:

类比探究

(1)如图2,在 Rt Δ ABC 中, BC 为斜边,分别以 AB AC BC 为斜边向外侧作 Rt Δ ABD Rt Δ ACE Rt Δ BCF ,若 1 = 2 = 3 ,则面积 S 1 S 2 S 3 之间的关系式为      

推广验证

(2)如图3,在 Rt Δ ABC 中, BC 为斜边,分别以 AB AC BC 为边向外侧作任意 ΔABD ΔACE ΔBCF ,满足 1 = 2 = 3 D = E = F ,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;

拓展应用

(3)如图4,在五边形 ABCDE 中, A = E = C = 105 ° ABC = 90 ° AB = 2 3 DE = 2 ,点 P AE 上, ABP = 30 ° PE = 2 ,求五边形 ABCDE 的面积.

来源:2020年江西省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,二次函数 y = x 2 3 x 的图象经过 O ( 0 , 0 ) A ( 4 , 4 ) B ( 3 , 0 ) 三点,以点 O 为位似中心,在 y 轴的右侧将 ΔOAB 按相似比 2 : 1 放大,得到△ OA ' B ' ,二次函数 y = a x 2 + bx + c ( a 0 ) 的图象经过 O A ' B ' 三点.

(1)画出△ OA ' B ' ,试求二次函数 y = a x 2 + bx + c ( a 0 ) 的表达式;

(2)点 P ( m , n ) 在二次函数 y = x 2 3 x 的图象上, m 0 ,直线 OP 与二次函数 y = a x 2 + bx + c ( a 0 ) 的图象交于点 Q (异于点 O )

①求点 Q 的坐标(横、纵坐标均用含 m 的代数式表示)

②连接 AP ,若 2 AP > OQ ,求 m 的取值范围;

③当点 Q 在第一象限内,过点 Q QQ ' 平行于 x 轴,与二次函数 y = a x 2 + bx + c ( a 0 ) 的图象交于另一点 Q ' ,与二次函数 y = x 2 3 x 的图象交于点 M N ( M N 的左侧),直线 OQ ' 与二次函数 y = x 2 3 x 的图象交于点 P ' .△ Q ' P ' M QB ' N ,则线段 NQ 的长度等于 

来源:2018年江苏省镇江市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图1,四边形 OABC 是矩形,点 A 的坐标为 ( 3 , 0 ) ,点 C 的坐标为 ( 0 , 6 ) ,点 P 从点 O 出发,沿 OA 以每秒1个单位长度的速度向点 A 运动,同时点 Q 从点 A 出发,沿 AB 以每秒2个单位长度的速度向点 B 运动,当点 P 与点 A 重合时运动停止.设运动时间为 t 秒.

(1)当 t = 2 时,线段 PQ 的中点坐标为  

(2)当 ΔCBQ ΔPAQ 相似时,求 t 的值;

(3)当 t = 1 时,抛物线 y = x 2 + bx + c 经过 P Q 两点,与 y 轴交于点 M ,抛物线的顶点为 K ,如图2所示,问该抛物线上是否存在点 D ,使 MQD = 1 2 MKQ ?若存在,求出所有满足条件的 D 的坐标;若不存在,说明理由.

来源:2018年江苏省扬州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,将等腰直角三角形纸片 ABC 对折,折痕为 CD .展平后,再将点 B 折叠在边 AC 上(不与 A C 重合),折痕为 EF ,点 B AC 上的对应点为 M ,设 CD EM 交于点 P ,连接 PF .已知 BC = 4

(1)若 M AC 的中点,求 CF 的长;

(2)随着点 M 在边 AC 上取不同的位置,

ΔPFM 的形状是否发生变化?请说明理由;

②求 ΔPFM 的周长的取值范围.

来源:2018年江苏省徐州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

初中数学相似三角形的判定与性质解答题