如图,过点 作 轴的垂线交直线 于点 ,过点 作直线 的垂线,交 轴于点 ,过点 作 轴的垂线交直线 于点 , ,这样依次下去,得到△ ,△ ,△ , ,其面积分别记为 , , , ,则 为
A. |
|
B. |
|
C. |
|
D. |
|
已知:如图, 为 的直径, 是 的弦, 垂直于过点 的直线 ,垂足为点 ,且 平分 .
求证:(1) 是 的切线;
(2) .
如图,在中,,,,平分,交于点,交于点,的外接圆交于点,连接.
(1)求证:是的切线;
(2)求的半径及的正切值.
如图, 中, , , ,点 从 点出发,在边 上以 的速度向 点运动,与此同时,点 从点 出发,在边 上以 的速度向 点运动,过 的中点 作 的垂线 ,则当点 运动了 时,以 点为圆心, 为半径的圆与直线 相切.
如图,是的直径,点为上一点,于点,交于点,点为的延长线上一点,的延长线与的延长线交于点,且,连结、、.
(1)求证:为的切线;
(2)过作于点,求证:;
(3)如果,,求的长.
问题探究:
小红遇到这样一个问题:如图1, 中, , , 是中线,求 的取值范围.她的做法是:延长 到 ,使 ,连接 ,证明 ,经过推理和计算使问题得到解决.
请回答:(1)小红证明 的判定定理是: ;
(2) 的取值范围是 ;
方法运用:
(3)如图2, 是 的中线,在 上取一点 ,连结 并延长交 于点 ,使 ,求证: .
(4)如图3,在矩形 中, ,在 上取一点 ,以 为斜边作 ,且 ,点 是 的中点,连接 , ,求证: .
由四个全等的直角三角形和一个小正方形组成的大正方形 如图所示.过点 作 的垂线交小正方形对角线 的延长线于点 ,连结 ,延长 交 于点 .若 ,则 的值为
A. |
|
B. |
|
C. |
|
D. |
|
如图,在 中, , 与 相切于点 ,过点 作 的垂线交 的延长线于点 ,交 于点 ,连结 .
(1)求证: 是 的切线.
(2)若 , ,求 的长.
如图, 为 的直径,弦 于点 , 于点 ,若 , ,则 的长度是
A. |
9.6 |
B. |
|
C. |
|
D. |
10 |
如图, 与 交于点 , , , 为 延长线上一点,过点 作 ,交 的延长线于点 .
(1)求证 ;
(2)若 , , ,求 的长.
如图,在 中, ,以其三边为边向外作正方形,过点 作 于点 ,再过点 作 分别交边 , 于点 , .若 , ,则 的长为
A.14B.15C. D.
定义:有三个内角相等的四边形叫三等角四边形.
(1)三等角四边形 中, ,求 的取值范围;
(2)如图,折叠平行四边形纸片 ,使顶点 , 分别落在边 , 上的点 , 处,折痕分别为 , .求证:四边形 是三等角四边形.
(3)三等角四边形 中, ,若 ,则当 的长为何值时, 的长最大,其最大值是多少?并求此时对角线 的长.
如图,在矩形 中, , 分别为边 , 的中点, 与 、 分别交于点 , .已知 , ,则 的长为 .