如图1, 是 的直径 上的一点,过 作 交 于 、 , 是 上的一点,过 的直线分别与 、 的延长线相交于 、 ,连接 交 于 , .
(1)求证: 是 的切线;
(2)若 , 的半径为4, ,求 的长;
(3)如图2,在(2)的条件下,连接 、 ;在线段 上有一点 ,并且以 、 、 为顶点的三角形与 相似,求 的长度.
如图,在 纸片中, , , ,点 , 分别在 , 上,连结 ,将 沿 翻折,使点 的对应点 落在 的延长线上,若 平分 ,则 的长为
A. |
|
B. |
|
C. |
|
D. |
|
如图, 是 的外接圆 的直径,点 在 延长线上,且满足 .
(1)求证: 是 的切线;
(2)弦 交 于点 ,若 ,求 的长.
如图,四边形 是菱形,点 为对角线 的中点,点 在 的延长线上, ,垂足为 ,点 在 的延长线上, ,垂足为 ,
(1)若 ,求证:四边形 是菱形;
(2)若 , 的面积为16,求菱形 的面积.
矩形 中, , .分别以 , 所在直线为 轴, 轴,建立如图1所示的平面直角坐标系. 是 边上一个动点(不与 , 重合),过点 的反比例函数 的图象与边 交于点 .
(1)当点 运动到边 的中点时,求点 的坐标;
(2)连接 ,求 的正切值;
(3)如图2,将 沿 折叠,点 恰好落在边 上的点 处,求此时反比例函数的解析式.
如图,在 的正方形网格中,每个小正方形的边长都为1, 为 与正方形网格线的交点,下列结论正确的是
A. |
|
B. |
|
C. |
|
D. |
|
如图,在 中, , 平分 交 于点 , 为 上一点,经过点 , 的 分别交 , 于点 , ,连接 交 于点 .
(1)求证: 是 的切线;
(2)设 , ,试用含 , 的代数式表示线段 的长;
(3)若 , ,求 的长,
如图,平行四边形 的对角线 , 相交于点 , 是 的中点.则 与 的面积的比等于
A. B. C. D.
由四个全等的直角三角形和一个小正方形组成的大正方形 如图所示.过点 作 的垂线交小正方形对角线 的延长线于点 ,连结 ,延长 交 于点 .若 ,则 的值为
A. |
|
B. |
|
C. |
|
D. |
|
如图,在 中, , 与 相切于点 ,过点 作 的垂线交 的延长线于点 ,交 于点 ,连结 .
(1)求证: 是 的切线.
(2)若 , ,求 的长.
如图, 为 的直径,弦 于点 , 于点 ,若 , ,则 的长度是
A. |
9.6 |
B. |
|
C. |
|
D. |
10 |
如图, 与 交于点 , , , 为 延长线上一点,过点 作 ,交 的延长线于点 .
(1)求证 ;
(2)若 , , ,求 的长.
如图,在 中, ,以其三边为边向外作正方形,过点 作 于点 ,再过点 作 分别交边 , 于点 , .若 , ,则 的长为
A.14B.15C. D.