如图,一张三角形纸片 ,其中 , , .现小林将纸片做三次折叠:第一次使点 落在 处;将纸片展平做第二次折叠,使点 落在 处;再将纸片展平做第三次折叠,使点 落在 处.这三次折叠的折痕长依次记为 , , ,则 , , 的大小关系是
A. B. C. D.
如图,在 中, ,将 沿直线 翻折得到 ,连接 交 于点 . 是线段 上的点,连接 . 是 的外接圆与 的另一个交点,连接 , .
(1)求证: 是直角三角形;
(2)求证: ;
(3)当 , 时,在线段 上存在点 ,使得 和 互相平分,求 的值.
从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.
(1)如图1,在 中, 为角平分线, , ,求证: 为 的完美分割线.
(2)在 中, , 是 的完美分割线,且 为等腰三角形,求 的度数.
(3)如图2, 中, , , 是 的完美分割线,且 是以 为底边的等腰三角形,求完美分割线 的长.
如图, 中, ,以点 为圆心, 为半径作 , 为 上一点,连接 、 , , 平分 .
(1)求证: 是 的切线;
(2)延长 、 相交于点 ,若 ,求 的值.
如图,已知 是等腰 的外接圆,点 是 上一点, 交 于点 ,若 , ,则 的长是
A.3B.2C.1D.1.2
【基础巩固】
(1)如图1,在 中, 为 上一点, .求证: .
【尝试应用】
(2)如图2,在 中, 为 上一点, 为 延长线上一点, .若 , ,求 的长.
【拓展提高】
(3)如图3,在菱形 中, 是 上一点, 是 内一点, , , , , ,求菱形 的边长.
我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”
(1)概念理解:
请你根据上述定义举一个等邻角四边形的例子;
(2)问题探究:
如图1,在等邻角四边形 中, , , 的中垂线恰好交于 边上一点 ,连接 , ,试探究 与 的数量关系,并说明理由;
(3)应用拓展:
如图2,在 与 中, , , ,将 绕着点 顺时针旋转角 得到 △ (如图 ,当凸四边形 为等邻角四边形时,求出它的面积.
如图, 是 的直径,点 、 在 上,且 ,连接 、 ,过点 作 的切线,分别与 、 的延长线交于点 、 .
(1)求证: ;
(2)若 , ,求线段 的长.
由四个全等的直角三角形和一个小正方形组成的大正方形 如图所示.过点 作 的垂线交小正方形对角线 的延长线于点 ,连结 ,延长 交 于点 .若 ,则 的值为
A. |
|
B. |
|
C. |
|
D. |
|
如图,在 中, , 与 相切于点 ,过点 作 的垂线交 的延长线于点 ,交 于点 ,连结 .
(1)求证: 是 的切线.
(2)若 , ,求 的长.
如图, 为 的直径,弦 于点 , 于点 ,若 , ,则 的长度是
A. |
9.6 |
B. |
|
C. |
|
D. |
10 |
如图, 与 交于点 , , , 为 延长线上一点,过点 作 ,交 的延长线于点 .
(1)求证 ;
(2)若 , , ,求 的长.
如图,在 中, ,以其三边为边向外作正方形,过点 作 于点 ,再过点 作 分别交边 , 于点 , .若 , ,则 的长为
A.14B.15C. D.