初中数学

如图,已知,AB=AC,过点A作AG⊥BC,垂足为G,延长AG交BM于D,过点A做AN∥BM,过点C作EF∥AD,与射线AN、BM分别相交于点F、E。

(1)求证:△BCE∽△AGC;
(2)点P是射线AD上的一个动点,设AP=x,四边形ACEP的面积是y,若AF=5,
①求y关于x的函数关系式,并写出定义域;
②当点P在射线AD上运动时,是否存在这样的点P,使得△CPE的周长为最小?若存在,求出此时y的值,若不存在,请说明理由。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题5分)如图,B是AC上一点,AD⊥AB,EC⊥BC,∠DBE=90°.

求证:△ABD∽△CEB. 

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题10分)如图13-1,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为米.
(1)用含的式子表示花圃的面积;
(2)如果通道所占面积是整个长方形空地面积的,求出此时通道的宽;
(3)若按上述要求施工,同时校长希望长方形花圃的形状与原长方形空地的形状相似,聪明的你想一想能不能满足校长的要求,若能,求出此时通道的宽;若不能,则说明理由。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

_如图3,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连接为边的三角形称为“格点三角形”,图中的△ABC是格点三角形,在建立平面直角坐标系后,点B的坐标为(-2,-2).
把△ABC向左平移8格后得到△A1B1C1,画出△A1B1C1的图形,此时点B1的坐为          
把△ABC绕点C按顺时针方向旋转90°后得到△A2B2C,画出△A2B2C的图形,此时
点B2的坐标为                
把△ABC以点A为位似中心放大为△AB3C3,使放大前后对应边长的比为1︰2,画出△AB3C3的图形.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图(1),一正方形纸板ABCD的边长为4,对角线AC、BD交于点O,一块等腰直角三角形的三角板的一个顶点处于点O处,两边分别与线段AB、AD交于点E、F,设BE=
(1)若三角板的直角顶点处于点O处,如图(2).判断三角形EOF的形状,并说明理由。

(2)在(1)的条件下,若三角形EOF的面积为S,求S关于x的函数关系式。
(3)若三角板的锐角顶点处于点O处,如图(3).

①若DF=,求关于的函数关系式,并写出自变量的取值范围;
②探究直线EF与正方形ABCD的内切圆的位置关系,并证明你的结论.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图1,将三角板放在正方形上,使三角板的直角顶点与正方形的顶点重合,三角扳的一边交于点.另一边交的延长线于点
求证:
如图2,移动三角板,使顶点始终在正方形的对角线上,其他条件不变,题(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:
如图3,将(2)中的“正方形”改为“矩形”,且使三角板的一边经过点,其他条件不变,若,求的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(1)已知,求的值.
(2)已知是锐角△ABC的三个内角,且满足,求的度数.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在△ABD和△AEC中,EAD上一点,若∠DAC =∠B,∠AEC =∠BDA. 求证:.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在阳光下某一时刻大树AB的影子落在墙DE上的C点,同时1.2 m的标杆影长3 m,已知CD=4m,BD="6" m,求大树的高度.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点.

(1)求证:=AB·AD;
(2)若AD=4,AB=6,求的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,□ABCD中,E是CD的延长线上一点,BE与AD交于点F,

(1)求证:△ABF∽△CEB;
(2)若△DEF的面积为2,求□ABCD的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(满分14分)如图,已知,点从点开始沿边向点的速度移动,点从点开始向点以相同的速度移动,若同时出发,移动时间为(0≤≤6).

(1)设的面积为,求关于的函数解析式;
(2)当的面积最大时,沿直线翻折后得到,试判断点是否落在直线上,并说明理由.
(3)当为何值时,相似.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知:ΔABC在坐标平面内,三个顶点的坐标为A(0,3)、B(3,4)、C(2,2),(正方形网格中,每个小正方形边长为1个单位长度)
(1)画出ΔABC向下平移4个单位得到的ΔA1B1C1
(2)以B为位似中心,在网格中画出ΔA2BC2,使ΔA2BC2与ΔABC位似,且位似比2 :1,直接写出C2点坐标是              
(3)ΔA2BC2的面积是              平方单位。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在ABCD中,过点B作BE⊥CD,垂足为E,连接AE.F为AE上一点,且∠BFE=∠C.

⑴试说明:△ABF∽△EAD;
⑵若AB=8,BE=6,AD=7,求BF的长.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,△ABC在方格纸中
请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2),并求出B点坐标;
以原点O为位似中心,位似比为2,在第一象限内将△ABC放大,画出放大后的位似图形
计算的面积S.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学相似多边形的性质解答题