如图,在平面直角坐标系中,直线分别交轴,轴于两点,以为边作矩形,为的中点.以,为斜边端点作等腰直角三角形,点在第一象限,设矩形与重叠部分的面积为.
求点的坐标;
当值由小到大变化时,求与的函数关系式;
若在直线上存在点,使等于,请直接写出的取值范围
在值的变化过程中,若为等腰三角形,且PC=PD,请直接写出的值.
如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.
(1)求证:∠APB=∠BPH;
(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;
(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.
在中,,,直线经过点,且于,于.
(1)当直线绕点旋转到图1的位置时,求证:
①≌;
②;
(2)当直线绕点旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.
我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什么情况下,它们会全等?
(1)阅读与说理:
对于这两个三角形均为直角三角形,显然它们全等.
对于这两个三角形均为钝角三角形,可证它们全等(证明略).
对于这两个三角形均为锐角三角形,它们也全等,可证明如下:
已知:如图所示,△ABC、△A1B1C1均为锐角三角形,AB=A1B1,BC=B1Cl,∠C=∠Cl.试说明△ABC≌△A1B1C1的理由.
(请你将下列说理过程补充完整).
理由:分别过点B,B1作BD⊥CA于D,B1 D1⊥C1 A1于D1.则∠BDC=∠B1D1C1=90°,
因为BC=B1C1,∠C=∠C1,△BCD≌△B1C1D1,BD=B1D1.
(2)归纳与叙述:由(1)可得到一个正确结论,请你写出这个结论.
如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,求四边形ACEB的周长.
在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.
(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);
(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.
如图, 的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格 、 、 中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格 、 、 中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.
(1)若乙固定在 处,移动甲后黑色方块构成的拼图是轴对称图形的概率是 .
(2)若甲、乙均可在本层移动.
①用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.
②黑色方块所构拼图是中心对称图形的概率是 .
规定:在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点旋转或后,能与自身重合(如图,所以正方形是旋转对称图形,且有两个旋转角.
根据以上规定,回答问题:
(1)下列图形是旋转对称图形,但不是中心对称图形的是 ;
.矩形
.正五边形
.菱形
.正六边形
(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有: (填序号);
(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形.
其中真命题的个数有 个;
.0
.1
.2
.3
(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有,,,,将图形补充完整.
(本题10分)如图,在直角梯形ABCD中,AB∥DC,∠D=90o,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).
(1)求证:△ACD∽△BAC;
(2)求DC的长;
(3)设四边形AFEC的面积为y,求y 关于t的函数关系式,并求出y的最小值.
如图,在直角坐标系中, 的直角边 在 轴上, , ,反比例函数 的图象经过 边的中点 .
(1)求这个反比例函数的表达式;
(2)若 与 成中心对称,且 的边 在 轴的正半轴上,点 在这个函数的图象上.
①求 的长;
②连接 , ,证明四边形 是正方形.
如图,AB是⊙O的直径,BC是⊙O的切线,D是⊙O上的一点,且AD∥OC,
OC与BD交于E,若AO=2,BC=2,求:
(1)求∠A的度数; (2)求DE的长
如图,在△ABC中,BC>AC,点D在BC上,且DC=AC.
(1)利用直尺与圆规先作∠ACB的平分线,交AD于F点,再作线段AB的垂直
平分线,交AB于点E,最后连结EF(保留作图痕迹,不要求写作法、证明).
(2)若线段AC= 8,BC= 12,求线段EF的长.