初中数学

如图,在平面直角坐标系中,直线分别交轴,轴于两点,以为边作矩形的中点.以为斜边端点作等腰直角三角形,点在第一象限,设矩形重叠部分的面积为

求点的坐标;
值由小到大变化时,求的函数关系式;
若在直线上存在点,使等于,请直接写出的取值范围
值的变化过程中,若为等腰三角形,且PC=PD,请直接写出的值.

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.
(1)求证:∠APB=∠BPH;
(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;
(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

中,,直线经过点,且.

(1)当直线绕点旋转到图1的位置时,求证:


(2)当直线绕点旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什么情况下,它们会全等?
(1)阅读与说理:
对于这两个三角形均为直角三角形,显然它们全等.
对于这两个三角形均为钝角三角形,可证它们全等(证明略).
对于这两个三角形均为锐角三角形,它们也全等,可证明如下:
已知:如图所示,△ABC、△A1B1C1均为锐角三角形,AB=A1B1,BC=B1Cl,∠C=∠Cl.试说明△ABC≌△A1B1C1的理由.
(请你将下列说理过程补充完整).
理由:分别过点B,B1作BD⊥CA于D,B1 D1⊥C1 A1于D1.则∠BDC=∠B1D1C1=90°,
因为BC=B1C1,∠C=∠C1,△BCD≌△B1C1D1,BD=B1D1.

(2)归纳与叙述:由(1)可得到一个正确结论,请你写出这个结论.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,求四边形ACEB的周长.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

B,C,D三点在一条直线上,△ABC和△ECD是等边三角形.求证:BE=AD.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在四张背面完全相同的纸牌ABCD,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.

(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用ABCD表示);

(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.

来源:2016年湖南省衡阳市中考数学试卷
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

如图所示,已知∠1=∠2,∠C=∠D,求证:

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图, 3 × 3 的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格 A B C 中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格 D E F 中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.

(1)若乙固定在 E 处,移动甲后黑色方块构成的拼图是轴对称图形的概率是  

(2)若甲、乙均可在本层移动.

①用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.

②黑色方块所构拼图是中心对称图形的概率是  

来源:2016年贵州省遵义市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

规定:在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点旋转后,能与自身重合(如图,所以正方形是旋转对称图形,且有两个旋转角.

根据以上规定,回答问题:

(1)下列图形是旋转对称图形,但不是中心对称图形的是  

.矩形

.正五边形

.菱形

.正六边形

(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有:  (填序号);

(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形.

其中真命题的个数有  个;

.0

.1

.2

.3

(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有,将图形补充完整.

来源:2020年贵州省黔西南州中考数学试卷
  • 更新:2020-12-29
  • 题型:未知
  • 难度:未知

(本题10分)如图,在直角梯形ABCD中,AB∥DC,∠D=90o,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).

(1)求证:△ACD∽△BAC;
(2)求DC的长;
(3)设四边形AFEC的面积为y,求y 关于t的函数关系式,并求出y的最小值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在直角坐标系中, Rt Δ ABC 的直角边 AC x 轴上, ACB = 90 ° AC = 1 ,反比例函数 y = k x ( k > 0 ) 的图象经过 BC 边的中点 D ( 3 , 1 )

(1)求这个反比例函数的表达式;

(2)若 ΔABC ΔEFG 成中心对称,且 ΔEFG 的边 FG y 轴的正半轴上,点 E 在这个函数的图象上.

①求 OF 的长;

②连接 AF BE ,证明四边形 ABEF 是正方形.

来源:2017年山东省淄博市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,AB是⊙O的直径,BC是⊙O的切线,D是⊙O上的一点,且AD∥OC,
OC与BD交于E,若AO=2,BC=2,求:
(1)求∠A的度数;     (2)求DE的长

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在△ABC中,BC>AC,点D在BC上,且DC=AC.
(1)利用直尺与圆规先作∠ACB的平分线,交AD于F点,再作线段AB的垂直
平分线,交AB于点E,最后连结EF(保留作图痕迹,不要求写作法、证明).
(2)若线段AC= 8,BC= 12,求线段EF的长.           

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,已知∠1=∠2,∠3=∠4,AB与CD相等吗?请你说明理由.

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学中心对称图形解答题