如图, 3 × 3 的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格 A 、 B 、 C 中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格 D 、 E 、 F 中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.
(1)若乙固定在 E 处,移动甲后黑色方块构成的拼图是轴对称图形的概率是 .
(2)若甲、乙均可在本层移动.
①用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.
②黑色方块所构拼图是中心对称图形的概率是 .
已知a、b、c均为实数,且,求方程的根.
如图,ABCD是围墙,AB∥CD,∠ABC=120°,一根6m长的绳子,一端拴在围墙一角的柱子上(B处),另一端拴着一只羊(E处).(1)请在图中画出羊活动的区域.(2)求出羊活动区域的面积.
已知在平面直角坐标系中的位置如下图所示.(1)分别写出图中点的坐标;(2)画出绕点按逆时针方向旋转后的;(3)求点旋转到点所经过的路线长(结果保留).
(10分).解方程(1) (2)
如图,直角梯形ABCD中,AD∥BC,∠A=90o,∠C=60°,AD=3cm,BC=9cm.⊙O1的圆心O1从点A开始沿折线A—D—C以1cm/s的速度向点C运动,⊙O2的圆心O2从点B开始沿BA边以cm/s的速度向点A运动,⊙O1半径为2cm,⊙O2的半径为4cm,若O1、O2分别从点A、点B同时出发,运动的时间为ts。(1)设经过t秒,⊙O2与腰CD相切于点F,过点F画EF⊥DC,交AB于E,则EF= 。(2)过E画EG∥BC,交DC于G,画GH⊥BC,垂足为H.则∠FEG= 。(3)求此时t的值。 (4)在0<t≤3范围内,当t为何值时,⊙O1与⊙O2外切?