如图,正方形中,,点是对角线上一点,连接,过点作,交于点,连接,交于点,将沿翻折,得到,连接,交于点,若点是边的中点,则的周长是 .
如图,在矩形 中, 是 边的中点,沿 对折矩形 ,使 点落在点 处,折痕为 ,连接 并延长 交 于 点,连接 并延长 交 于 点.给出以下结论:
①四边形 为平行四边形;
② ;
③ 为等腰三角形;
④ .
其中正确结论的个数为
A.1B.2C.3D.4
正方形中,对角线,相交于点,平分交于点,把沿翻折,得到,点是的中点,连接,,.若.则四边形的面积是 .
如图, 中, , , ,点 是 的中点,将 沿 翻折得到 ,连 ,则线段 的长等于
A.2B. C. D.
如图,四边形 是一张正方形纸片,其面积为 .分别在边 , , , 上顺次截取 ,连接 , , , .分别以 , , , 为轴将纸片向内翻折,得到四边形 .若四边形 的面积为 ,则 .
如图, 中, , , ,将 沿过点 的直线 折叠,使点 落到 边上的点 处,折痕交 边于点 .
(1)求证:四边形 是菱形;
(2)若点 是直线 上的一个动点,请计算 的最小值.
如图,矩形 ABCD与菱形 EFGH的对角线均交于点 O,且 EG∥ BC,将矩形折叠,使点 C与点 O重合,折痕 MN过点 G.若 AB= , EF=2,∠ H=120°,则 DN的长为( )
A. |
- |
B. |
|
C. |
|
D. |
2 |
将一个直角三角形纸片放置在平面直角坐标系中,点,点,点.是边上的一点(点不与点,重合),沿着折叠该纸片,得点的对应点.
(1)如图①,当点在第一象限,且满足时,求点的坐标;
(2)如图②,当为中点时,求的长;
(3)当时,求点的坐标(直接写出结果即可).
如图,将一个三角形纸片 沿过点 的直线折叠,使点 落在 边上的点 处,折痕为 ,则下列结论一定正确的是
A. |
|
B. |
|
C. |
|
D. |
|
如图,将长、宽分别为 , 的长方形纸片分别沿 , 折叠,点 , 恰好重合于点 .若 ,则折叠后的图案(阴影部分)面积为
A. |
|
B. |
|
C. |
|
D. |
|
如图,四边形 是矩形, 、 分别是线段 、 上的点,点 是 与 的交点.若将 沿直线 折叠,则点 与点 重合.
(1)求证:四边形 是菱形;
(2)若 , ,求 的值.
如图,小聪用一张面积为1的正方形纸片,按如下方式操作:
①将正方形纸片四角向内折叠,使四个顶点重合,展开后沿折痕剪开,把四个等腰直角三角形扔掉;
②在余下纸片上依次重复以上操作,当完成第2019次操作时,余下纸片的面积为( )
A. |
2 2019 |
B. |
|
C. |
|
D. |
|
对给定的一张矩形纸片 进行如下操作:先沿 折叠,使点 落在 边上(如图① ,再沿 折叠,这时发现点 恰好与点 重合(如图②
(1)根据以上操作和发现,求 的值;
(2)将该矩形纸片展开.
①如图③,折叠该矩形纸片,使点 与点 重合,折痕与 相交于点 ,再将该矩形纸片展开.求证: ;
②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的 点,要求只有一条折痕,且点 在折痕上,请简要说明折叠方法.(不需说明理由)