如图,将矩形 沿 折叠,使点 落在点 处, 交 于点 ,若 ,则 等于
A. |
|
B. |
|
C. |
|
D. |
|
实验探究:
(1)如图1,对折矩形纸片 ,使 与 重合,得到折痕 ,把纸片展开;再一次折叠纸片,使点 落在 上,并使折痕经过点 ,得到折痕 ,同时得到线段 , .请你观察图1,猜想 的度数是多少,并证明你的结论.
(2)将图1中的三角形纸片 剪下,如图2.折叠该纸片,探究 与 的数量关系.写出折叠方案,并结合方案证明你的结论.
如图,在 中, , , ,将 沿直线 AC翻折至 所在的平面内,得 .过点 A作 ,使 ,与 的延长线交于点 E,连接 BE,则线段 BE的长为( )
A. |
|
B. |
3 |
C. |
|
D. |
4 |
如图,矩形纸片 中, , .将纸片折叠,使点 落在边 的延长线上的点 处,折痕为 ,点 、 分别在边 和边 上.连接 ,交 于点 , 交 于点 .给出以下结论:
① ;
② ;
③ 和 的面积相等;
④当点 与点 重合时, ,
其中正确的结论共有
A. |
1个 |
B. |
2个 |
C. |
3个 |
D. |
4个 |
如图,将矩形 沿 对折,点 落在 处,点 落在 边上的 处, 与 相交于点 ,若 , , ,则 周长的大小为 .
如图,先有一张矩形纸片,,,点,分别在矩形的边,上,将矩形纸片沿直线折叠,使点落在矩形的边上,记为点,点落在处,连接,交于点,连接.下列结论:
①;
②四边形是菱形;
③,重合时,;
④的面积的取值范围是.
其中正确的是 (把正确结论的序号都填上).
如图,矩形 ABCD中, AB> AD,把矩形沿对角线 AC所在直线折叠,使点 B落在点 E处, AE交 CD于点 F,连接 DE.
(1)求证:△ ADE≌△ CED;
(2)求证:△ DEF是等腰三角形.
如图,在 中, , , , ,点 是边 上一点,连接 ,将 沿 翻折得到 .
(1)若 , ,且 ,求 的长;
(2)连接 ,若四边形 是平行四边形,求 与 之间的关系式.
如图,在 中,点 在 上,把这个直角三角形沿 折叠后,使点 恰好落到斜边 的中点 处,若 ,则折痕 的长为
A. B. C. D.6
如图,△ ABC中, AC= BC=3, AB=2,将它沿 AB翻折得到△ ABD,点 P、 E、 F分别为线段 AB、 AD、 DB上的动点,则 PE+ PF的最小值是( )
A. |
|
B. |
|
C. |
|
D. |
|
如图,在边长为3的菱形 ABCD中,∠ A=60°, M是 AD边上的一点,且 AM= AD, N是 AB边上的一动点,将△ AMN沿 MN所在直线翻折得到△ A′ MN,连接 A′ C.则 A′ C长度的最小值是 .
如图, 中, , , ,将 沿过点 的直线 折叠,使点 落到 边上的点 处,折痕交 边于点 .
(1)求证:四边形 是菱形;
(2)若点 是直线 上的一个动点,请计算 的最小值.
如图,矩形 ABCD与菱形 EFGH的对角线均交于点 O,且 EG∥ BC,将矩形折叠,使点 C与点 O重合,折痕 MN过点 G.若 AB= , EF=2,∠ H=120°,则 DN的长为( )
A. |
- |
B. |
|
C. |
|
D. |
2 |
如图,矩形 中, 与 相交于点 , ,将 沿 折叠,点 的对应点为 ,连接 交 于点 ,且 ,在 边上有一点 ,使得 的值最小,此时
A. |
|
B. |
|
C. |
|
D. |
|