如图,在 中, , , .
(1)求 边上的高线长.
(2)点 为线段 的中点,点 在边 上,连结 ,沿 将 折叠得到 .
①如图2,当点 落在 上时,求 的度数.
②如图3,连结 ,当 时,求 的长.
如图,有一张矩形纸条 , , ,点 , 分别在边 , 上, .现将四边形 沿 折叠,使点 , 分别落在点 , 上.当点 恰好落在边 上时,线段 的长为 ;在点 从点 运动到点 的过程中,若边 与边 交于点 ,则点 相应运动的路径长为 .
已知在 中, , 是 边上的一点,将 沿着过点 的直线折叠,使点 落在 边的点 处(不与点 , 重合),折痕交 边于点 .
(1)特例感知 如图1,若 , 是 的中点,求证: ;
(2)变式求异 如图2,若 , , ,过点 作 于点 ,求 和 的长;
(3)化归探究 如图3,若 , ,且当 时,存在两次不同的折叠,使点 落在 边上两个不同的位置,请直接写出 的取值范围.
如图是一张矩形纸片,点 在 边上,把 沿直线 对折,使点 落在对角线 上的点 处,连接 .若点 , , 在同一条直线上, ,则 , .
在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片 沿过点 的直线折叠,使得点 落在 上的点 处.折痕为 ;再将 , 分别沿 , 折叠,此时点 , 落在 上的同一点 处.请完成下列探究:
(1) 的大小为 ;
(2)当四边形 是平行四边形时, 的值为 .
将一个直角三角形纸片 放置在平面直角坐标系中,点 ,点 ,点 在第一象限, , ,点 在边 上(点 不与点 , 重合).
(Ⅰ)如图①,当 时,求点 的坐标;
(Ⅱ)折叠该纸片,使折痕所在的直线经过点 ,并与 轴的正半轴相交于点 ,且 ,点 的对应点为 ,设 .
①如图②,若折叠后△ 与 重叠部分为四边形, , 分别与边 相交于点 , ,试用含有 的式子表示 的长,并直接写出 的取值范围;
②若折叠后△ 与 重叠部分的面积为 ,当 时,求 的取值范围(直接写出结果即可).
如图,三角形纸片 ,点 是 边上一点,连接 ,把 沿着 翻折,得到 , 与 交于点 ,连接 交 于点 .若 , , , 的面积为2,则点 到 的距离为
A. B. C. D.
如图,在矩形 中, 为 的中点, 为 边上的任意一点,把 沿 折叠,得到 ,连接 .若 , ,则 的最小值为 .
矩形纸片 ,长 ,宽 ,折叠纸片,使折痕经过点 ,交 边于点 ,点 落在点 处,展平后得到折痕 ,同时得到线段 , ,不再添加其它线段.当图中存在 角时, 的长为 .
(1)如图1,将矩形 折叠,使 落在对角线 上,折痕为 ,点 落在点 处,若 ,则 的度数为 .
(2)小明手中有一张矩形纸片 , , .
【画一画】
如图2,点 在这张矩形纸片的边 上,将纸片折叠,使 落在 所在直线上,折痕设为 (点 , 分别在边 , 上),利用直尺和圆规画出折痕 (不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);
【算一算】
如图3,点 在这张矩形纸片的边 上,将纸片折叠,使 落在射线 上,折痕为 ,点 , 分别落在点 , 处,若 ,求 的长;
【验一验】
如图4,点 在这张矩形纸片的边 上, ,将纸片折叠,使 落在 所在直线上,折痕为 ,点 , 分别落在点 , 处,小明认为 所在直线恰好经过点 ,他的判断是否正确,请说明理由.
如图,在以线段 为直径的 上取一点 ,连接 、 .将 沿 翻折后得到 .
(1)试说明点 在 上;
(2)在线段 的延长线上取一点 ,使 .求证: 为 的切线;
(3)在(2)的条件下,分别延长线段 、 相交于点 ,若 , ,求线段 的长.
如图,在 中, , , , ,点 是边 上一点,连接 ,将 沿 翻折得到 .
(1)若 , ,且 ,求 的长;
(2)连接 ,若四边形 是平行四边形,求 与 之间的关系式.
对给定的一张矩形纸片 进行如下操作:先沿 折叠,使点 落在 边上(如图① ,再沿 折叠,这时发现点 恰好与点 重合(如图②
(1)根据以上操作和发现,求 的值;
(2)将该矩形纸片展开.
①如图③,折叠该矩形纸片,使点 与点 重合,折痕与 相交于点 ,再将该矩形纸片展开.求证: ;
②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的 点,要求只有一条折痕,且点 在折痕上,请简要说明折叠方法.(不需说明理由)
如图,矩形 中, 是 的中点,将 沿 翻折,点 落在点 处, .设 , 的面积为 ,则 与 的函数图象大致为
A.B.
C.D.