初中数学

如果三角形的两个内角 α β 满足 2 α + β = 90 ° ,那么我们称这样的三角形为“准互余三角形”.

(1)若 ΔABC 是“准互余三角形”, C > 90 ° A = 60 ° ,则 B =    °

(2)如图①,在 Rt Δ ABC 中, ACB = 90 ° AC = 4 BC = 5 .若 AD BAC 的平分线,不难证明 ΔABD 是“准互余三角形”.试问在边 BC 上是否存在点 E (异于点 D ) ,使得 ΔABE 也是“准互余三角形”?若存在,请求出 BE 的长;若不存在,请说明理由.

(3)如图②,在四边形 ABCD 中, AB = 7 CD = 12 BD CD ABD = 2 BCD ,且 ΔABC 是“准互余三角形”,求对角线 AC 的长.

来源:2018年江苏省淮安市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,把 ΔABC 沿 BC 翻折得 ΔDBC

(1)连接 AD ,则 BC AD 的位置关系是  

(2)不在原图中添加字母和线段,只加一个条件使四边形 ABDC 是平行四边形,写出添加的条件,并说明理由.

来源:2018年江苏省常州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图, D ΔABC BC 边上一点,连接 AD ,作 ΔABD 的外接圆,将 ΔADC 沿直线 AD 折叠,点 C 的对应点 E 落在 O 上.

(1)求证: AE = AB

(2)若 CAB = 90 ° cos ADB = 1 3 BE = 2 ,求 BC 的长.

来源:2018年浙江省温州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,等边三角形 ABC 边长是定值,点 O 是它的外心,过点 O 任意作一条直线分别交 AB BC 于点 D E .将 ΔBDE 沿直线 DE 折叠,得到△ B ' DE ,若 B ' D B ' E 分别交 AC 于点 F G ,连接 OF OG ,则下列判断错误的是 (    )

A. ΔADF ΔCGE

B.△ B ' FG 的周长是一个定值

C.四边形 FOEC 的面积是一个定值

D.四边形 OG B ' F 的面积是一个定值

来源:2018年浙江省台州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,将矩形 ABCD 沿 GH 折叠,点 C 落在点 Q 处,点 D 落在 AB 边上的点 E 处,若 AGE = 32 ° ,则 GHC 等于 (    )

A. 112 ° B. 110 ° C. 108 ° D. 106 °

来源:2018年浙江省衢州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,已知在 ΔABC 中, BAC > 90 ° ,点 D BC 的中点,点 E AC 上,将 ΔCDE 沿 DE 折叠,使得点 C 恰好落在 BA 的延长线上的点 F 处,连接 AD ,则下列结论不一定正确的是 (    )

A. AE = EF B. AB = 2 DE

C. ΔADF ΔADE 的面积相等D. ΔADE ΔFDE 的面积相等

来源:2018年浙江省湖州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

折叠矩形纸片 ABCD 时,发现可以进行如下操作:①把 ΔADE 翻折,点 A 落在 DC 边上的点 F 处,折痕为 DE ,点 E AB 边上;②把纸片展开并铺平;③把 ΔCDG 翻折,点 C 落在线段 AE 上的点 H 处,折痕为 DG ,点 G BC 边上,若 AB = AD + 2 EH = 1 ,则 AD =   

来源:2018年浙江省杭州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,矩形 EFGH 的四个顶点分别在菱形 ABCD 的四条边上, BE = BF .将 ΔAEH ΔCFG 分别沿边 EH FG 折叠,当重叠部分为菱形且面积是菱形 ABCD 面积的 1 16 时,则 AE EB (    )

A. 5 3 B.2C. 5 2 D.4

来源:2017年浙江省台州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,矩形纸片 ABCD 中, AB = 4 BC = 6 ,将 ΔABC 沿 AC 折叠,使点 B 落在点 E 处, CE AD 于点 F ,则 DF 的长等于 (    )

A. 3 5 B. 5 3 C. 7 3 D. 5 4

来源:2017年浙江省衢州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在菱形纸片 ABCD 中, AB = 2 A = 60 ° ,将菱形纸片翻折,使点 A 落在 CD 的中点 E 处,折痕为 FG ,点 F G 分别在边 AB AD 上,则 cos EFG 的值为  

来源:2017年浙江省宁波市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图1,将 ΔABC 纸片沿中位线 EH 折叠,使点 A 对称点 D 落在 BC 边上,再将纸片分别沿等腰 ΔBED 和等腰 ΔDHC 的底边上的高线 EF HG 折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.

(1)将 ABCD 纸片按图2的方式折叠成一个叠合矩形 AEFG ,则操作形成的折痕分别是线段     S 矩形 AEFG : S ABCD =   

(2) ABCD 纸片还可以按图3的方式折叠成一个叠合矩形 EFGH ,若 EF = 5 EH = 12 ,求 AD 的长;

(3)如图4,四边形 ABCD 纸片满足 AD / / BC AD < BC AB BC AB = 8 CD = 10 ,小明把该纸片折叠,得到叠合正方形,请你帮助画出叠合正方形的示意图,并求出 AD BC 的长.

来源:2017年浙江省金华市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

一块竹条编织物,先将其按如图所示绕直线 MN 翻转 180 ° ,再将它按逆时针方向旋转 90 ° ,所得的竹条编织物是 (    )

A.B.

C.D.

来源:2017年浙江省金华市义乌市(绍兴市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

一张矩形纸片 ABCD ,已知 AB = 3 AD = 2 ,小明按如图步骤折叠纸片,则线段 DG 长为 (    )

A. 2 B. 2 2 C.1D.2

来源:2017年浙江省嘉兴市(舟山市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,一张三角形纸片 ABC ,其中 C = 90 ° AC = 4 BC = 3 .现小林将纸片做三次折叠:第一次使点 A 落在 C 处;将纸片展平做第二次折叠,使点 B 落在 C 处;再将纸片展平做第三次折叠,使点 A 落在 B 处.这三次折叠的折痕长依次记为 a b c ,则 a b c 的大小关系是 (    )

A. c > a > b B. b > a > c C. c > b > a D. b > c > a

来源:2016年浙江省温州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

小红用次数最少的对折方法验证了一条四边形丝巾的形状是正方形,她对折了 (    )

A.1次B.2次C.3次D.4次

来源:2016年浙江省台州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

初中数学翻折变换(折叠问题)试题