如果三角形的两个内角 α 与 β 满足 2 α + β = 90 ° ,那么我们称这样的三角形为“准互余三角形”.
(1)若 ΔABC 是“准互余三角形”, ∠ C > 90 ° , ∠ A = 60 ° ,则 ∠ B = ° ;
(2)如图①,在 Rt Δ ABC 中, ∠ ACB = 90 ° , AC = 4 , BC = 5 .若 AD 是 ∠ BAC 的平分线,不难证明 ΔABD 是“准互余三角形”.试问在边 BC 上是否存在点 E (异于点 D ) ,使得 ΔABE 也是“准互余三角形”?若存在,请求出 BE 的长;若不存在,请说明理由.
(3)如图②,在四边形 ABCD 中, AB = 7 , CD = 12 , BD ⊥ CD , ∠ ABD = 2 ∠ BCD ,且 ΔABC 是“准互余三角形”,求对角线 AC 的长.
如图,点D在△ABC的AB边上,且∠ACD=∠A. (1)作△BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法); (2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).
先化简,再求值:()·(-1),其中x=
(本题10分)下图的数阵是由一些奇数排成的. (1)上图框中的四个数有什么关系?(设框中第一行第一个数为,用表示其它三个数) (2)若这样框出的四个数的和是200,求这四个数. (3)是否存在这样的四个数,它们的和为420,为什么?
(本题10分)一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.
(本题10分)张新和李明相约到图书城去买书,请你根据他们的对话内容,求出李明上次所买书籍的原价.