如果三角形的两个内角 α 与 β 满足 2 α + β = 90 ° ,那么我们称这样的三角形为“准互余三角形”.
(1)若 ΔABC 是“准互余三角形”, ∠ C > 90 ° , ∠ A = 60 ° ,则 ∠ B = ° ;
(2)如图①,在 Rt Δ ABC 中, ∠ ACB = 90 ° , AC = 4 , BC = 5 .若 AD 是 ∠ BAC 的平分线,不难证明 ΔABD 是“准互余三角形”.试问在边 BC 上是否存在点 E (异于点 D ) ,使得 ΔABE 也是“准互余三角形”?若存在,请求出 BE 的长;若不存在,请说明理由.
(3)如图②,在四边形 ABCD 中, AB = 7 , CD = 12 , BD ⊥ CD , ∠ ABD = 2 ∠ BCD ,且 ΔABC 是“准互余三角形”,求对角线 AC 的长.
如图,已知△ABC中,AD⊥BC于D,BE⊥AC于E,交AD于H,若AC=BH,试判断△ABD的形状,并证明你的结论.
已知:如图,∠1=∠2,DE=DC,EF=AC.求证:EF∥AB.
已知a与b互为相反数,m、n互为倒数,求a+1+mn+b的值.
现在,友谊商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物. (1)顾客购买多少元金额的商品时,买卡与不买卡花钱相等?在什么情况下购物合算? (2)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱? (3)小张按合算的方案,把这台冰箱买下,如果友谊商场还能盈利25%,这台冰箱的进价是多少元?
如图,已知线段AB=40厘米,E为AB的中点,C在EB上,F为CB的中点,且FB=6厘米,求CE的长.