初中数学

如图,已知的直径,相切于点,且

(1)求证:的切线;

(2)延长于点.若的半径为2,求的长.(结果保留

来源:2019年湖南省郴州市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,已知 ΔABC O 的内接三角形, AD O 的直径,连结 BD BC 平分 ABD

(1)求证: CAD = ABC

(2)若 AD = 6 ,求 CD ̂ 的长.

来源:2020年浙江省湖州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,为半圆的直径,点为半圆上任一点.

(1)若,过点作半圆的切线交直线于点.求证:

(2)若,过点的平行线交半圆于点.当以点为顶点的四边形为菱形时,求的长.

来源:2017年河南省中考数学试卷(备用卷)
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,点 D BC 边长一点, DE AB ,垂足为点 E ,点 O 在线段 ED 的延长线上,且 O 经过 C D 两点.

(1)判断直线 AC O 的位置关系,并说明理由;

(2)若 O 的半径为2, CD ̂ 的长为 10 9 π ,请求出 A 的度数.

来源:2016年辽宁省辽阳市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

如图是由边长为1的小正方形组成的网格,每个小正方形的顶点叫做格点,点均在格点上,在网格中将点按下列步骤移动:

第一步:点绕点顺时针旋转得到点

第二步:点绕点顺时针旋转得到点

第三步:点绕点顺时针旋转回到点

(1)请用圆规画出点经过的路径;

(2)所画图形是  对称图形;

(3)求所画图形的周长(结果保留

来源:2018年吉林省中考数学试卷
  • 更新:2021-01-03
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ AOB 中, ABO = 90 ° OAB = 30 ° ,以点 O 为圆心, OB 为半径的圆交 BO 的延长线于点 C ,过点 C OA 的平行线,交 O 于点 D ,连接 AD

(1)求证: AD O 的切线;

(2)若 OB = 2 ,求弧 CD 的长.

来源:2021年湖南省张家界市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图1和2,中,.点延长线上一点,过点于点,设

(1)如图1,为何值时,圆心落在上?若此时于点,直接指出的位置关系;

(2)当时,如图2,交于点,求的度数,并通过计算比较弦与劣弧长度的大小;

(3)当与线段只有一个公共点时,直接写出的取值范围.

来源:2019年河北省中考数学试卷
  • 更新:2021-01-05
  • 题型:未知
  • 难度:未知

阅读理解:

我们把满足某种条件的所有点所组成的图形,叫做符合这个条件的点的轨迹.

例如:角的平分线是到角的两边距离相等的点的轨迹.

问题:如图1,已知 EF ΔABC 的中位线, M 是边 BC 上一动点,连接 AM EF 于点 P ,那么动点 P 为线段 AM 中点.

理由: 线段 EF ΔABC 的中位线, EF / / BC

由平行线分线段成比例得:动点 P 为线段 AM 中点.

由此你得到动点 P 的运动轨迹是:            

知识应用:

如图2,已知 EF 为等边 ΔABC AB AC 上的动点,连接 EF ;若 AF = BE ,且等边 ΔABC 的边长为8,求线段 EF 中点 Q 的运动轨迹的长.

拓展提高:

如图3, P 为线段 AB 上一动点(点 P 不与点 A B 重合),在线段 AB 的同侧分别作等边 ΔAPC 和等边 ΔPBD ,连接 AD BC ,交点为 Q

(1)求 AQB 的度数;

(2)若 AB = 6 ,求动点 Q 运动轨迹的长.

来源:2016年山东省日照市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,点 C O 外, ABC 的平分线与 O 交于点 D C = 90 °

(1) CD O 有怎样的位置关系?请说明理由;

(2)若 CDB = 60 ° AB = 6 ,求 AD ̂ 的长.

来源:2018年江苏省徐州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

(年云南省昆明市)如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).

(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;
(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2
(3)求出(2)中C点旋转到C2点所经过的路径长(记过保留根号和π).

来源:2015中考真题分项汇编 第2期 专题4 图形的变换问题
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(年贵州省黔东南州)如图,已知PC平分∠MPN,点O是PC上任意一点,PM与⊙O相切于点E,交PC于A、B两点.

(1)求证:PN与⊙O相切;
(2)如果∠MPC=30°,PE=,求劣弧的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° CA = CB ,点 O ΔABC 的内部, O 经过 B C 两点,交 AB 于点 D ,连接 CO 并延长交 AB 于点 G ,以 GD GC 为邻边作 GDEC

(1)判断 DE O 的位置关系,并说明理由.

(2)若点 B DBC ̂ 的中点, O 的半径为2,求 BC ̂ 的长.

来源:2019年辽宁省抚顺市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,半圆 O 的直径 AB = 4 ,以长为2的弦 PQ 为直径,向点 O 方向作半圆 M ,其中 P 点在 AQ ̂ 上且不与 A 点重合,但 Q 点可与 B 点重合.

发现: AP ̂ 的长与 QB ̂ 的长之和为定值 l ,求 l :

思考:点 M AB 的最大距离为   ,此时点 P A 间的距离为   

M AB 的最小距离为   ,此时半圆 M 的弧与 AB 所围成的封闭图形面积为   

探究:当半圆 M AB 相切时,求 AP ̂ 的长.

(注:结果保留 π cos 35 ° = 6 3 cos 55 ° = 3 3 )

来源:2016年河北省中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中, AB = m BC = n ,将此矩形绕点 B 顺时针方向旋转 θ ( 0 ° < θ < 90 ° ) 得到矩形 A 1 B C 1 D 1 ,点 A 1 在边 CD 上.

(1)若 m = 2 n = 1 ,求在旋转过程中,点 D 到点 D 1 所经过路径的长度;

(2)将矩形 A 1 B C 1 D 1 继续绕点 B 顺时针方向旋转得到矩形 A 2 B C 2 D 2 ,点 D 2 BC 的延长线上,设边 A 2 B CD 交于点 E ,若 A 1 E EC = 6 1 ,求 n m 的值.

来源:2018年江苏省无锡市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

在下面的网格中,每个小正方形的边长均为1, ΔABC 的三个顶点都是网格线的交点,已知 B C 两点的坐标分别为 ( 3 , 0 ) ( 1 , 1 )

(1)请在图中画出平面直角坐标系,并直接写出点 A 的坐标.

(2)将 ΔABC 绕着坐标原点顺时针旋转 90 ° ,画出旋转后的△ A ' B ' C '

(3)接写出在上述旋转过程中,点 A 所经过的路径长.

来源:2019年辽宁省丹东市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

初中数学弧长的计算解答题