初中数学

如图,在平面直角坐标系 xOy 中, A ( 4 , 0 ) B ( 0 , 3 ) C ( 4 , 3 ) I ΔABC 的内心,将 ΔABC 绕原点逆时针旋转 90 ° 后, I 的对应点 I ' 的坐标为 (    )

A. ( - 2 , 3 ) B. ( - 3 , 2 ) C. ( 3 , - 2 ) D. ( 2 , - 3 )

来源:2018年湖北省荆门市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,边长为 2 3 的等边 ΔABC 的内切圆的半径为 (    )

A.

1

B.

3

C.

2

D.

2 3

来源:2019年湖南省娄底市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中, AB = 4 BC = 3 ,连接 AC P Q 分别是 ΔABC ΔADC 的内切圆,则 PQ 的长是 (    )

A. 5 2 B. 5 C. 5 2 D. 2 2

来源:2016年贵州省遵义市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图,,点分别在射线上,

(1)用尺规在图中作一段劣弧,使得它在两点分别与射线相切.要求:写出作法,并保留作图痕迹;

(2)根据(1)的作法,结合已有条件,请写出已知和求证,并证明;

(3)求所得的劣弧与线段围成的封闭图形的面积.

来源:2019年山东省德州市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图,已知 ΔABC 的内切圆 O BC 边相切于点 D ,连接 OB OD .若 ABC = 40 ° ,则 BOD 的度数是  

来源:2018年浙江省湖州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

已知关于的一元二次方程

(1)求证:无论为任何实数,此方程总有两个实数根;

(2)若方程的两个实数根为,满足,求的值;

(3)若的斜边为5,另外两条边的长恰好是方程的两个根,求的内切圆半径.

来源:2019年四川省乐山市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

已知 ΔABC 的内切圆 O AB BC AC 分别相切于点 D E F ,若 EF ̂ = DE ̂ ,如图1.

(1)判断 ΔABC 的形状,并证明你的结论;

(2)设 AE DF 相交于点 M ,如图2, AF = 2 FC = 4 ,求 AM 的长.

来源:2017年广西百色市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

阅读以下材料,并按要求完成相应的任务:

莱昂哈德欧拉是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面就是欧拉发现的一个定理:在中,分别为外接圆和内切圆的半径,分别为其中外心和内心,则

如图1,分别是的外接圆和内切圆,相切分于点,设的半径为的半径为,外心(三角形三边垂直平分线的交点)与内心(三角形三条角平分线的交点)之间的距离,则有

下面是该定理的证明过程(部分)

延长于点,过点的直径,连接

(同弧所对的圆周角相等).

,①

如图2,在图1(隐去的基础上作的直径,连接

的直径,所以

相切于点,所以

(同弧所对的圆周角相等),

任务:(1)观察发现:  (用含的代数式表示);

(2)请判断的数量关系,并说明理由.

(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;

(4)应用:若的外接圆的半径为,内切圆的半径为,则的外心与内心之间的距离为  

来源:2019年山西省中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为 (    )

A. 3 2 B. 3 2 C. 3 D. 2 3

来源:2017年湖北省武汉市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = 3 AC = 9 4 ,点 D BC 边上的一点, AD = BD = 2 DC ,设 ΔABD ΔACD 的内切圆半径分别为 r 1 r 2 ,那么 r 1 r 2 = (    )

A.2B. 4 3 C. 3 2 D. 2 3

来源:2016年四川省德阳市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AC = 3 BC = 4 D E 分别在 CA CB 上,点 F ΔABC 内.若四边形 CDFE 是边长为1的正方形,则 sin FBA =   

来源:2021年江苏省常州市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图, O 是等边 ΔABC 的内切圆,分别切 AB BC AC 于点 E F D P DF ̂ 上一点,则 EPF 的度数是 (    )

A. 65 ° B. 60 ° C. 58 ° D. 50 °

来源:2020年浙江省金华市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,已知 ΔABC B = 40 °

(1)在图中,用尺规作出 ΔABC 的内切圆 O ,并标出 O 与边 AB BC AC 的切点 D E F (保留痕迹,不必写作法);

(2)连接 EF DF ,求 EFD 的度数.

来源:2017年浙江省嘉兴市(舟山市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图, O ΔABC 的外接圆, BC O 的直径,点 E ΔABC 的内心,连接 AE 并延长交 O D 点,连接 BD 并延长至 F ,使得 BD = DF ,连接 CF BE

(1)求证: DB = DE

(2)求证:直线 CF O 的切线.

来源:2017年湖北省黄石市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

ABC的内切圆的三个切点分别为DEF A 75 ° B 45 ° ,则圆心角 EOF     度.

来源:2016年湖南省株洲市中考数学试卷
  • 更新:2021-04-15
  • 题型:未知
  • 难度:未知

初中数学三角形的内切圆与内心试题