如图,矩形 ABCD中, BC=4, CD=2,以 AD为直径的半圆 O与 BC相切于点 E,连接 BD,则阴影部分的面积为 .(结果保留π)
如图, 、 分别与 相切于 、 , , 为 上一点,则 的度数为
A. |
|
B. |
|
C. |
|
D. |
|
以 O为中心点的量角器与直角三角板 ABC如图摆放,直角顶点 B在零刻度线所在直线 DE上,且量角器与三角板只有一个公共点 P,则∠ CBD的度数是( )
A. |
45°10' |
B. |
44°50' |
C. |
46°10' |
D. |
不能确定 |
如图,在 中, ,以 为直径作 交 于点 ,过点 作 的切线 交 于点 ,交 延长线于点 .
(1)求证: ;
(2)若 , ,求 的长.
如图,⊙ O为等腰三角形 ABC的外接圆, AB是⊙ O的直径, AB=12, P为 上任意一点(不与点 B, C重合),直线 CP交 AB的延长线于点 Q,⊙ O在点 P处的切线 PD交 BQ于点 D,则下列结论:①若∠ PAB=30°,则 的长为π;②若 PD∥ BC,则 AP平分∠ CAB;③若 PB= BD,则 PD=6 ;④无论点 P在 上的位置如何变化, CP• CQ=108.其中正确结论的序号为 .
如图,已知 为 直径, 是 的切线,连接 交 于点 ,取 的中点 ,连接 交 于点 ,过点 作 于 .
(1)求证: ;
(2)若 , ,求 和 的长.
如图,在矩形中,,以顶点为圆心,1为半径作,过边上的一点作射线与相切于点,且交边于点,连接,若,,则 的大小约为 度 分.(参考数据: , )
如图,在 中, , , ,点 是 的三等分点,半圆 与 相切, , 分别是 与半圆弧上的动点,则 的最小值和最大值之和是
A.5B.6C.7D.8
如图, 为 的切线,切点为 ,连接 、 , 与 交于点 ,延长 与 交于点 ,连接 .若 ,则 的度数为
A. B. C. D.
如图, 为 的直径, 、 是 的切线,切点分别为点 、 ,点 为线段 上的一个动点,连接 , , ,已知 , ,当 的值最小时,则 的值为
A. B. C. D.
如图,过⊙O上的两点A、B分别作切线,并交BO、AO的延长线于点C、D,连接CD,交⊙O于点E、F,过圆心O作OM⊥CD,垂足为M点.
求证:(1)△ACO≌△BDO;(2)CE=DF.
如图, 是 的直径, ,点 为线段 上一点(不与 , 重合),作 ,交 于点 ,垂足为点 ,作直径 ,过点 的切线交 的延长线于点 , 于点 ,连接 .
(1)求证: 是 的平分线;
(2)求证: ;
(3)当 时,求劣弧 的长度(结果保留
如图,四边形 ABCD中, MA= MC, MB= MD,以 AB为直径的圆 O过点 M且与 DC延长线相切于点 E.
(1)求证:四边形 ABCD是菱形;
(2)若 AB=4,求 的长(结果请保留π)
如图,AB是半圆O的直径,点P是BA延长线上一点,PC是⊙O的切线,切点为C,过点B作BD⊥PC交PC的延长线于点D,连接BC.求证:
(1)∠PBC=∠CBD;
(2)BC2=AB•BD.