初中数学

如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5,在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK。
(1)若∠1=70°,求∠MKN的度数;
(2)当折痕MN与对角线AC重合时,试求△MNK的面积.
(3)△MNK的面积能否小于0.5?若能,求出此时∠1的度数;若不能,试说明理由;

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本题8分)在等腰梯形ABCD中,ABDCAD=BC=5,DC=7,AB=13,点P从点A出发以每秒2个单位长度的速度沿ADDC向终点C运动,同时点Q从点B出发,以每秒1个单位的速度沿BA向终点A运动,设运动时间为t秒.
⑴当t为何值时,四边形PQBC为平行四边形时?
⑵在整个运动过程中,当t为何值时,以点CPQ为顶点的三角形是直角三角形?

 

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,正方形OABC的边长为a.直线y=bx+c交x轴于E,交y轴于F,且a、b、c分别满足-(a-4)2≥0,
(1)求直线y=bx+c的解析式并直接写出正方形OABC的对角线的交点D的坐标;
(2)直线y=bx+c沿x轴正方向以每秒移动1个单位长度的速度平移,设平移的时间为t秒,问是否存在t的值,使直线EF平分正方形OABC的面积?若存在,请求出t的值;若不存在,请说明理由;
点P为正方形OABC的对角线AC上的动点(端点A、C除外),PM⊥PO,交直线AB于M,求的值

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,四边形OABC是矩形,点AC的坐标分别为(3,0),
(0,1),点D是线段BC上的动点(与端点BC不重合),过点D作直线
=-交折线OAB于点E
(1)记△ODE的面积为S,求S的函数关系式;
(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在直角坐标系中,四边形OABC的OA,OC两边分别在x,y轴上,OA∥BC,BC=15cm,A点坐标为(16,0),C点坐标为(0,4).点P,Q分别从C,A同时出发,点P以2cm/s的速度由C向B运动,点Q以4cm/s的速度由A向O运动,当点Q到达点O时,点P也停止运动,设运动时间为t秒(0≤t≤4).

(1)求当t为多少时,四边形PQAB为平行四边形?
(2)求当t为多少时?PQ所在直线将四边形OABC分成左右两部分的面积比为1:2;
(3)直接写出在(2)的情况下,直线PQ的函数关系式.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

、(本题12分)如图甲,在△ABC中,E是AC边上的一点,
(1)在图甲中,作出以BE为对角线的平行四边形BDEF,使D、F分别在BC和AB边上;
(2)改变点E的位置,则图甲中所作的平行四边形BDEF有没有可能为菱形?若有,请在图乙中作出点E的位置(用尺规作图,并保留作图痕迹);若没有,请说明理由.

 

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

把一个含45°角的直角三角板BEF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点B重合,联结DF,点M,N分别为DF,EF的中点,联结MA,MN.
(1)如图1,点E,F分别在正方形的边CB,AB上,请判断MA,MN的数量关系和位置关系,直接
写出结论;
(2)如图2,点E,F分别在正方形的边CB,AB的延长线上,其他条件不变,那么你在(1)中得到的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.

图1                            图2

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在锐角三角形 ABC 中, AD BC 边上的高,以 AD 为直径的 O AB 于点 E ,交 AC 于点 F ,过点 F FG AB ,垂足为 H ,交 AE ̂ 于点 G ,交 AD 于点 M ,连接 AG DE DF

(1)求证: GAD + EDF = 180 °

(2)若 ACB = 45 ° AD = 4 tan ABC = 2 ,求 HF 的长.

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图1,四边形 ABCD 内接于 O AD 为直径,点 C CE AB 于点 E ,连接 AC

(1)求证: CAD = ECB

(2)若 CE O 的切线, CAD = 30 ° ,连接 OC ,如图2.

①请判断四边形 ABCO 的形状,并说明理由;

②当 AB = 2 时,求 AD AC CD ̂ 围成阴影部分的面积.

来源:2021年江西省中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图,已知 ΔABC 内接于 O ,点 C 在劣弧 AB 上(不与点 A B 重合),点 D 为弦 BC 的中点, DE BC DE AC 的延长线交于点 E ,射线 AO 与射线 EB 交于点 F ,与 O 交于点 G ,设 GAB = α ACB = β EAG + EBA = γ

(1)点点同学通过画图和测量得到以下近似数据:

α

30 °

40 °

50 °

60 °

β

120 °

130 °

140 °

150 °

γ

150 °

140 °

130 °

120 °

猜想: β 关于 α 的函数表达式, γ 关于 α 的函数表达式,并给出证明;

(2)若 γ = 135 ° CD = 3 ΔABE 的面积为 ΔABC 的面积的4倍,求 O 半径的长.

来源:2017年浙江省杭州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在矩形ABCD中,AB=3,BC=4,动点P从点D出发沿DA向终点A运动,同时动点Q从点A出发沿对角线AC向终点C运动.过点P作PE∥DC,交AC于点E,动点P、Q的运动速度是每秒1个单位长度,运动时间为t秒,当点P运动到点A时,P、Q两点同时停止运动.

(1)用含有t的代数式表示PE=          
(2)探究:当t为何值时,四边形PQBE为梯形?
(3)是否存在这样的点P和点Q,使△PQE为等腰三角形?若存在,请求出所有满足要求的t的值;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(1)探究:如图1和2,四边形ABCD中,已知AB=AD,∠BAD=90°,点E、F分别在BC、CD上,∠EAF=45°.
①如图1,若∠B、∠ADC都是直角,把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,则能证得EF=BE+DF,请写出推理过程;
②如图2,若∠B、∠D都不是直角,则当∠B与∠D满足数量关系          时,仍有EF=BE+DF;
(2)拓展:如图3,在△ABC中,∠BAC=90°,AB=AC=2,点D、E均在边BC上,且∠DAE=45°.若BD=1,求DE的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在矩形ABCD中,AB=a,AD=b,点M为BC边上一动点(点M与点B、C不重合),连接AM,过点M作MN⊥AM,垂足为M,MN交CD或CD的延长线于点N.

(1)求证:△CMN∽△BAM;
(2)设BM=x,CN=y,求y关于x的函数解析式.当x取何值时,y有最大值,并求出y的最大值;
(3)当点M在BC上运动时,求使得下列两个条件都成立的b的取值范围:①点N始终在线段CD上,②点M在某一位置时,点N恰好与点D重合.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图①所示,已知A、B为直线a上两点,点C为直线a上方一动点,连接AC、BC,分别以AC、BC为边向△ABC外作正方形CADF和正方形CBEG,过点D作D⊥a于点,过点E作E⊥a于点

(1)如图②,当点E恰好在直线a上时,(此时E1和E重合)。试说明D=AB;
(2)如图①中,当D、E两点都在直线a的上方时,试探求三条线段D、E、AB之间的数量关系,并说明理由。
(3)如图③,当点E在直线a的下方时,请直接写出三条线段D、E、AB之间的数量关系。(不需要证明)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知:如图,在ABCD中,AE⊥BC,垂足为E,CE=CD,点F为CE的中点,点G为CD上的一点,连接DF、EG、AG,∠1=∠2。

(l)若CF=2,AE=3,求BE的长;
(2)求证:

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学圆内接四边形的性质解答题