如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线=-+交折线OAB于点E.(1)记△ODE的面积为S,求S与的函数关系式;(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.
在课外科学活动中,小明同学在相同条件下分3次做了某种作物种子发芽的实验,每次所用的种子数、每次的发芽率(发芽率×100%)分别如图1,图2所示:(1)求3次实验的种子平均发芽率;(2)如果要想得到900粒发芽的种子,根据上面的计算结果,估计要用多少粒该种作物种子?
(本小题满分12分) 如图,RtΔABC中,∠ACB=90°,AC=4,BA=5,点P是AC上的动点(P不与A、C重合)PQ⊥AB,垂足为Q.设PC=x,PQ= y.⑴求y与x的函数关系式;⑵试确定此RtΔABC内切圆I的半径,并探求x为何值时,直线PQ与这个内切圆I相切?⑶若0<x<1,试判断以P为圆心,半径为y的圆与⊙I能否相内切,若能求出相应的x的值,若不能,请说明理由.
(本小题满分12分)如图,已知抛物线与关于轴对称,并与轴交于点M,与轴交于点A和B.(1)求出的解析式,试猜想出一般形式关于轴对称的二次函数解析式(不要求证明); (2)若AB的中点是C,求; (3)如果一次函数过点,且与抛物线,相交于另一点,如果,且,求的值。
(本小题满分10分)△ABC中,AC=BC.以BC为直径作⊙O交AB于点D,交AC于点G.直线DF⊥AC,垂足为F,交CB的延长线于点E.(1)判断直线EF与⊙O的位置关系,并说明理由;(2)如果BC=10,AB=12,求CG的长.
(本小题满分10分) 在我们学习过的数学教科书中,有一个数学活动,其具体操作过程是: 第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开(如图1); 第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN(如图2) 请解答以下问题:(1)如图2,若延长MN交BC于P,△BMP是什么三角形?请证明你的结论.(2)在图2中,若AB=a,BC=b,a、b满足什么关系,才能在矩形纸片ABCD上剪出符合(1)中结论的三角形纸片BMP ?