如图,已知△ABC的中线BD、CE相交于点O、M、N分别为OB、OC的中点.
(1)求证:MD和NE互相平分;
(2)若BD⊥AC,EM=2,OD+CD=7,求△OCB的面积.
如图,▱ABCD中,点E、F分别在边AD、BC上,且AE=CF,连接BE、DF.求证:BE∥DF.
将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,
(1)求证:四边形AECF为菱形;
(2)若AB=4,BC=8,求菱形的边长;
(3)在(2)的条件下折痕EF的长.
如图,已知平行四边形ABCD,延长BC至E,使CE=BC,连接AC,DE,求证:AC=DE.
已知:如图,在▱ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.
(1)求证:△DOE≌△BOF;
(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.
如图,在直角梯形ABCD中,AD∥BC,∠D=∠C=90°,点E在DC上,且AE,BE分别平分∠BAD和∠ABC.
(1)求证:点E为CD中点;
(2)当AD=2,BC=3时,求AB的长.
如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.
(1)求证:△BED≌△CFD;
(2)若∠A=90°,求证:四边形DFAE是正方形.
如图,已知,在Rt△ABC中,∠BAC=90°.
实践与操作:
(1)①利用尺规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法):作线段AC的垂直平分线MN,垂足为O;
②连接BO,并延长BO到点D,使得OD=BO,连接AD、CD;
③分别在OA、OC的延长线上取点E、F,使AE=CF,连接BF、FD、DE、EB.
推理与运用:
(2)①求证:四边形BFDE是平行四边形;
②若AB=4,AC=6,求当AE的长为多少时,四边形BFDE是矩形.
如图,在平四边形ABCD中,对角线AC与BD相交于点O,P为线段BC上一点(除端点外),连接PO并延长交AD于点Q,延长BC到点E,使CE=BC,连接DE.
(1)求证:BP=DQ;
(2)已知AB=5,AC=6,若CD=BE,求△BDE的周长.
长方形纸片ABCD中,AD=4cm,AB=10cm,按如图方式折叠,使点B与点D重合,折痕为EF,求DE的长.
如图,在△ABC中,点D是BC的中点,点F是AD的中点,过点D作DE∥AC,交CF的延长线于点E,连接BE,AE.
(1)求证:四边形ACDE是平行四边形;
(2)若AB=AC,试判断四边形ADBE的形状,并证明你的结论.
如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.
求证:四边形OCED是菱形.
将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′ 处,折痕为EF.
(1)求证:△ABE≌△AD′F;
(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.
如图,四边形ABCD是平行四边形,AC、BD交于点O,且∠1=∠2,
(1)求证:四边形ABCD是矩形
(2)若∠AOB=60°,AB=8,求BC的长.
如图,在正方形ABCD中,E为ED边上的一点,CE=CF,∠FDC=30°,求∠BEF的度数.