如图,四边形ABCD是长方形.
(1)作△ABC关于直线AC对称的图形;
(2)试判断(1)中所作的图形与△ACD重叠部分的三角形形状,并说明理由.
(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;
(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.
(3)运用(1)(2)解答中所积累的经验和知识,完成下题:
如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.
如图,在▱ABCD中,E、F分别为边ABCD的中点,BD是对角线,过A点作平行四边形AGDB交CB的延长线于点G.
(1)求证:DE∥BF;
(2)若∠G=90,求证:四边形DEBF是菱形.
如图,将▱ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.
(1)求证:△ABF≌△ECF;
(2)若∠AFC=2∠D,连接AC、BE,求证:四边形ABEC是矩形.
已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC与点E、F,垂足为O.
(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;
(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周,即点P自A→F→B→A停止,点Q自C→D→E→C停止,在运动过程中,已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.
如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.
在平行四边形ABCD中,对角线AC和BD交于点O,AC=8.
(1)如图1,若AB⊥AC,BD=12,点P是线段AD上的动点(不包含端点A,D),过点P作PE⊥AC,垂足为点E,PF⊥BD,垂足为点F,设PE=x,PF=y,求y与x的函数关系式并直接写出自变量x的取值范围;
(2)如图2,若AE平分∠BAC,点F为BC中点,且点F保持在点E的右边,求线段BC的变化范围.
如图,在四边形ABCD中,∠ABC=90°,∠BAD=135°,AB=1,AC=,点E为CD中点.
求证:CD=2AE.
如图,在正方形ABCD中,点E是对角线BD上的点,求证:△ABE≌△CBE.
观察下列图形的变化过程,解答以下问题:
如图,在△ABC中,D为BC边上的一动点(D点不与B、C两点重合).DE∥AC交AB于E点,DF∥AB交AC于F点.
(1)试探索AD满足什么条件时,四边形AEDF为菱形,并说明理由;
(2)在(1)的条件下,△ABC满足什么条件时,四边形AEDF为正方形.为什么?
已知:在平面直角坐标系中,点A(1,0),点B(4,0),点C在y轴正半轴上,且OB=2OC.
(1)试确定直线BC的解析式;
(2)在平面内确定点M,使得以点M、A、B、C为顶点的四边形是平行四边形,请直接写出点M的坐标.
如图,已知△ABC中,AB=2,BC=4
(1)画出△ABC的高AD和CE;
(2)若AD=,求CE的长.
如图,在6×6的正方形网格中,每个小正方形的顶点称为格点,每个小正方形的边长均为1,点A,B,C都在格点上,在正方形网格中找到格点D,使以A,B,C,D为顶点的四边形是平行四边形,并画出所有符合要求的平行四边形.
如图,在▱ABCD中,对角线AC,BD相交于点O,AC+BD=36,△ABO的周长为30,求AB的长.
如图,正方形ABCD,DE与HG相交于点O.
(1)如图(1),当∠GOD=90°,①求证:DE=GH; ②求证:GD+EH≥DE;
(2)如图(2),当∠GOD=45°,边长AB=4,HG=2,求DE的长.