(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.
已知,大正方形的边长为4,小正方形的边长为2,状态如图所示.大正方形固定不动,把小正方形以的速度向大正方形的内部沿直线平移,设平移的时间为秒,两个正方形重叠部分的面积为,完成下列问题:用含的式子表示,要求画出相应的图形,表明的范围;当,求重叠部分的面积;当,求的值.
如图为一个平面. 如图1,有1条直线,可把这个平面分成2部分;如图2,有2条直线,可把这个平面最少分成3部分,最多分成4部分;有3条直线,问可以把这个平面分成几部分?请在图3中画出相应的图形.有4条直线,可把这个平面最少分成部分,最多分成部分;同一平面内条直线最少可以把平面分成几部分?最多可以把平面分成几部分?
如图,在平面直角坐标系中.请你写出各点的坐标;求;若把向左平移3个单位,向上平移2个单位,得,请你画出,并写出的坐标.
如图,、分别是、上一点,,与互余, . 试说明
如图为某学校的平面图(图中每个小正方形的边长为1个单位长度).请你以学校大门为坐标原点建立直角坐标系,并用坐标表示各处的位置.