初中数学

小敏思考解决如下问题:

原题:如图1,点 P Q 分别在菱形 ABCD 的边 BC CD 上, PAQ = B ,求证: AP = AQ

(1)小敏进行探索,若将点 P Q 的位置特殊化;把 PAQ 绕点 A 旋转得到 EAF ,使 AE BC ,点 E F 分别在边 BC CD 上,如图2.此时她证明了 AE = AF ,请你证明.

(2)受以上(1)的启发,在原题中,添加辅助线:如图3,作 AE BC AF CD ,垂足分别为 E F .请你继续完成原题的证明.

(3)如果在原题中添加条件: AB = 4 B = 60 ° ,如图1,请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).

来源:2018年浙江省绍兴市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图所示,四边形 ABCD 是菱形,边 BC x 轴上,点 A ( 0 , 4 ) ,点 B ( 3 , 0 ) ,双曲线 y = k x 与直线 BD 交于点 D 、点 E

(1)求 k 的值;

(2)求直线 BD 的解析式;

(3)求 ΔCDE 的面积.

来源:2018年四川省巴中市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中,对角线 AC BD 相交于点 O AC = 4 BD = 8 ,点 E 在边 AD 上, AE = 1 3 AD ,连结 BE AC 于点 M

(1)求 AM 的长.

(2) tan MBO 的值为   

来源:2021年吉林省长春市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

在菱形 ABCD 中, ABC = 60 ° ,点 P 是射线 BD 上一动点,以 AP 为边向右侧作等边 ΔAPE ,点 E 的位置随着点 P 的位置变化而变化.

(1)如图1,当点 E 在菱形 ABCD 内部或边上时,连接 CE BP CE 的数量关系是   CE AD 的位置关系是  

(2)当点 E 在菱形 ABCD 外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);

(3)如图4,当点 P 在线段 BD 的延长线上时,连接 BE ,若 AB = 2 3 BE = 2 19 ,求四边形 ADPE 的面积.

来源:2018年江西省中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,坐标原点 O 是菱形 ABCD 的对称中心.边 AB x 轴平行,点 B ( 1 , 2 ) ,反比例函数 y = k x ( k 0 ) 的图象经过 A C 两点.

(1)求点 C 的坐标及反比例函数的解析式.

(2)直线 BC 与反比例函数图象的另一交点为 E ,求以 O C E 为顶点的三角形的面积.

来源:2017年四川省攀枝花市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中,对角线 AC BD 相交于点 M O 经过点 B C ,交对角线 BD 于点 E ,且 CE ̂ = BE ̂ ,连接 OE BC 于点 F

(1)试判断 AB O 的位置关系,并说明理由;

(2)若 BD = 32 5 5 tan CBD = 1 2 ,求 O 的半径.

来源:2021年内蒙古赤峰市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中,过 B BE AD E ,过 B BF CD F

求证: AE = CF

来源:2018年四川省广元市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD是菱形,点 EF分别在边 ABAD的延长线上,且 BE DF ,连接 CECF.求证: CE CF

来源:2021年四川省广安市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,点 E F 分别在菱形 ABCD 的边 DC DA 上,且 CE = AF

求证: ABF = CBE

来源:2017年四川省自贡市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

【基础巩固】

(1)如图1,在 ΔABC 中, D AB 上一点, ACD = B .求证: A C 2 = AD · AB

【尝试应用】

(2)如图2,在 ABCD 中, E BC 上一点, F CD 延长线上一点, BFE = A .若 BF = 4 BE = 3 ,求 AD 的长.

【拓展提高】

(3)如图3,在菱形 ABCD 中, E AB 上一点, F ΔABC 内一点, EF / / AC AC = 2 EF EDF = 1 2 BAD AE = 2 DF = 5 ,求菱形 ABCD 的边长.

来源:2020年浙江省宁波市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 7 × 7 的正方形网格中,网格线的交点称为格点,点 A B 在格点上,每一个小正方形的边长为1.

(1)以 AB 为边画菱形,使菱形的其余两个顶点都在格点上(画出一个即可).

(2)计算你所画菱形的面积.

来源:2021年浙江省嘉兴市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中,对角线 AC BD 相交于点 O E CD 中点,连接 OE .过点 C CF / / BD OE 的延长线于点 F ,连接 DF

求证:(1) ΔODE ΔFCE

(2)四边形 OCFD 是矩形.

来源:2019年新疆生产建设兵团中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中,点 M N 分别在 AB CB 上,且 ADM = CDN ,求证: BM = BN

来源:2021年山东省菏泽市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,点 E F 分别在菱形 ABCD 的边 BC CD 上,且 BE = DF .求证: BAE = DAF

来源:2020年福建省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是菱形,对角线 AC BD 相交于点 O ,且 AB = 2

(1)求菱形 ABCD 的周长;

(2)若 AC = 2 ,求 BD 的长.

来源:2018年广西柳州市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

初中数学菱形的性质解答题