如图,点 E , F 分别在菱形 ABCD 的边 DC , DA 上,且 CE = AF .
求证: ∠ ABF = ∠ CBE .
已知:如图,二次函数y=a(x+1)2-4的图象与x轴分别交于A、B两点,与y轴交于点D,点C是二次函数y=a(x+1)2-4的图象的顶点,CD=.求a的值点M在二次函数y=a(x+1)2-4图象的对称轴上,且∠AMC=∠BDO,求点M的坐标.将二次函数y=a(x+1)2-4的图象向下平移k(k>0)个单位,平移后的图象与直线CD分别交于E、F两点(点F在点E左侧),设平移后的二次函数的图象的顶点为C1,与y轴的交点为D1,是否存在实数k,使得CF⊥FC1,若存在,求出k的值;若不存在,请说明理由.
知识背景:恩施来凤有一处野生古杨梅群落,其野生杨梅是一种具特殊价值的绿色食品.在当地市场出售时,基地要求“杨梅”用双层上盖的长方体纸箱封装(上盖纸板面积刚好等于底面面积的2倍,如图) 实际运用:如果要求纸箱的高为0.5米,底面是黄金矩形(宽与长的比是黄金比,取黄金比为0.6),体积为0.3立方米. ①按方案1(如图)做一个纸箱,需要矩形硬纸板的面积是多少平方米? ②小明认为,如果从节省材料的角度考虑,采用方案2(如图)的菱形硬纸板做一个纸箱比方案1更优,你认为呢?请说明理由.
南菁中学的高中部在敔山湾校区,初中部在老校区,学校学生会在3月12日植树节当天安排部分学生到郊区公园参加植树活动.已知敔山湾校区的每位高中学生往返车费是6元,每人每天可栽植5棵树;老校区的每位初中学生往返车费是10元,每人每天可栽植3棵树.要求初高中均有学生参加,且参加活动的初中学生比参加活动的高中学生多4人,本次活动的往返车费总和不得超过210元.要使本次活动植树最多,初高中各有多少学生参加?最多植树多少棵?
某校组织初三学生电脑技能竞赛,每班参加比赛的学生人数相同,竞赛成绩分为A、B、C、D四个等级,其中相应等级的得分依次记为100分,90分,80分,70分.将初三(1)班和(2)班的成绩整理并绘制成统计图如下.此次竞赛中(2)班成绩在C级以上(包括C级)的人数为 ▲ ;请你将表格补充完整:试运用所学的统计知识,从二个不同角度评价初三(1)班和初三(2)班的成绩
某电脑公司现有A,B,C三种型号的甲品牌电脑和D,E两种型号的乙品牌电脑.南菁中学要从甲、乙两种品牌电脑中各选购一种型号的电脑写出所有选购方案(利用列表的方法或树状图表示)如果(1)中各种选购方案被选中的可能性相同,那么A型号电脑被选中的概率是多少?